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ABSTRACT: The large-scale deployment of carbon capture
technologies is expected to play a crucial role in efforts to meet Point Source
stringent climate targets set forth by the Paris Agreement, but CO, Emissions
current models rely heavily upon carbon dioxide removal (CDR)
strategies for which viability at the gigatonne scale is uncertain.
While most 1.5 and 2 °C scenarios project rapid decarbonization
of the energy sector facilitated by carbon capture and sequestration
(CCS), they generally assume that CCS units can only capture
~90% of the CO, in coal and natural gas combustion flues because
this was previously considered the optimal condition for aqueous
amine scrubbers. In this Perspective, we discuss a small but
growing body of literature that examines the prospect of moving significantly beyond 90% capture—a concept we term deep CCS—
in light of recent developments in materials and process design. The low incremental costs associated with performing varying
degrees of deep CCS suggest that this approach is not only feasible but may also alleviate burdens placed upon CDR techniques
facing significant barriers to large-scale deployment. We estimate that rapid deployment of deep CCS in deep decarbonization
pathways could avoid more than 1 gigatonne of CO, globally each year. The principles of deep CCS could also be applied directly to
the CDR strategy of employing bioenergy with CCS, which could lead to a significant alleviation of the land and freshwater burden
associated with this technology.

90% Capture

S
CDR Avoided

KEYWORDS: deep decarbonization, capture rate, carbon dioxide removal

1. INTRODUCTION commercially mature technology for capturing CO, from point
sources involves absorbing the CO, into aqueous amine
solutions.”” In many cases, existing coal- and natural gas-fired
power stations can be retrofitted with carbon capture units,
and thus it would not be necessary to overhaul or replace all
existing fossil-fuel burning plants to reap the benefits of CCS.
Plants that are retrofitted with carbon capture units may also
be operated flexibly in response to changes in electrical
demand."®*'™** While 1.5 and 2 °C IAM scenarios have
frequently projected that CCS will be instrumental in
minimizing the cost of climate change mitigation,25 commer-
cial deployment of CCS has not yet reached the scale projected
by these scenarios. This disparity is due in part to cost overruns
and technical obstacles faced by first-of-a-kind CCS facilities as
well as past limited public and private support. Until now,
these factors have restricted the deployment of CCS to <50
MtCO,/yr globally, with a large portion of these plants
performing enhanced oil recovery with the captured CO,.”*™**
However, the near tripling of large-scale CCS capacity in

Global anthropogenic CO, emissions now exceed 40 Gt/yr,'
~75% of which derive from the combustion of fossil fuels.” In
order to keep average surface temperatures well below 2 °C of
preindustrial values, as set forth by the Paris Agreement,
integrated assessment model (IAM) scenarios (see Supporting
Information (SI) Table S1 for a glossary of commonly used
terms) have underscored the need for rapid decarbonization of
the power generation sector.”* Variable renewable energy
technologies are prevalent in these scenarios, although their
penetration into the global energy portfolio is still limited by
technoeconomic and sociopolitical hurdles.’~"* Principal
among these obstacles are the costs associated with the
construction of infrastructure for renewable electrical gen-
eration and the need to balance inflexible supply with time-
varying demand.”™'® Although many 1.§ and 2 °C IAM
scenarios project rapid scale-up of variable renewables by
midcentury,”"” the growing need to curb anthropogenic CO,
emissions has motivated the deployment of alternative low-
carbon technologies in the near-term.

Carbon capture and sequestration (CCS) is one leading
strategy that has been proposed as a means to substantially
mitigate CO, emissions’’ and refers to a set of technologies
that capture CO, directly from the flue exhaust of point
sources (such as fossil-fueled power plants) and store it
underground in geological formations. Currently, the most
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development between 2017 and 2020 suggests that this
technology is now entering a new period where large-scale
commercial deployment will soon be feasible.*”

Although CCS can in principle decarbonize a substantial
portion of the power generation sector, it is unable to mitigate
emissions from disperse sources, such as those derived from
the transportation and residential sectors. By contrast,
techniques capable of actively removing CO, from the air
can ameliorate these disperse emissions, and are widely
deployed in deep decarbonization pathways.”>™>> These
techniques, collectively referred to as carbon dioxide removal
(CDR), describe an array of natural and artificial strategies for
removing CO, from ambient air. Currently, the most
commonly explored CDR strategies for large-scale deployment
include afforestation/reforestation, bioenergy with CCS
(BECCS), and direct air capture with sequestration (DACS),
among others.**™*" Briefly, afforestation describes the process
of planting trees on land where there was not recently forestry,
whereas reforestation describes the planting of trees on
recently deforested land.*”~** BECCS describes the capture
and storage of CO, produced from the conversion of biomass
or biomass-derived fuels into energy,%_49 and DACS
encompasses the direct removal and storage of CO, from
ambient air via engineered processes.’’ > Although these
techniques are commonly expected to remove >100 Gt of CO,
cumulatively by the end of the century (Figure 1),"**** their
feasibility for large-scale deployment remains highly uncertain.
For BECCS and afforestation/reforestation, this uncertainty is
primarily due to concerns over land and freshwater availability
at the levels needed for large-scale CDR and the ecological and
ethical risks that arise from the dedication of fertile land for
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Figure 1. Cumulative carbon dioxide removal for 1.5 °C (upper) and
2 °C (lower) scenarios. Data are from the Grantham Institute TIMES
Integrated Assessment Model in ref S4. Until recently, integrated
assessment modeling of technological CDR other than BECCS has
been uncommon.**~%*
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this purpose.”® Given these biogeophysical and socioeconomic
constraints and the uncertain practical potential of afforesta-
tion/reforestation and BECCS, substantial investigation into
alternatives, such as DACS, is underway in order to satisfy the
global CDR requirement.*”*® DACS offers some alleviation of
the land/water burden because it does not require arable land
or nearly as much water as afforestation/reforestation or
BECCS. However, commercial DACS operations are currently
hampered by substantial costs, primarily arising from to the
need to regenerate CO, from strongly binding capture
media.””*’™>" The direct air capture company Carbon
Engineering recently published a conceptual analysis of its
pilot plant that estimates an overall levelized cost for DACS in
the range $113—232 per tonne of CO, captured, with the
lower end of this estimate corresponding to designs for which
low-carbon electricity is available at low cost.” Although this is
a significant improvement upon previous cost estimates for
DACS (e.g., $600/tonne of CO,), %61 it is still more expensive
than the majority of estimates for conventional point-source
CCS technologies (e.g., $36—53/tonneCO, for coal CCS and
$48—111/tonneCO, for natural gas combined cycle CCS).*
While there are circumstances under which DACS could
become cost—comgetitive with other decarbonization measures
in the near-term,”** most 1.5 and 2 °C IAM scenarios project
that fossil CCS will hold a central role in decarbonizing the
power generation sector in the next few decades.

In these scenarios, decarbonization of the power generation
sector is typically only partially achieved with CCS. One
fundamental reason is that the capture fractions considered in
most designs and IAMs are well below the values of ~99% and
~99.7% for natural gas combined cycle (NGCC) and
pulverized coal combustion, respectively, that would be needed
to achieve outlet CO, compositions equal to the ~410 ppm in
ambient air (commonly referred to as “carbon-zero” or “carbon
neutral” capture fractions). Thus, residual CO, emissions still
escape fossil fuel-fired units, despite the presence of carbon
capture. Although ~90% capture is commonly assumed in
designs and models irrespective of plant size or the
composition of the flue gas, it is not necessarily the most
cost-effective capture fraction for these circumstances (Figure
2a).°77* Recent studies’>’* have demonstrated that pursuing
capture significantly beyond 90% in point-source CCS,
hereafter referred to as deep CCS, may be associated with
only marginal increases in plant capital and operating expense.
In this Perspective, we assess the pursuit of such deeper
capture targets in light of the global carbon budget and
propose that the residual emissions avoided may dramatically
alleviate burdens placed upon CDR techniques. We note that
our discussion hinges upon the assumption that deep CCS
would be implemented only after the successful deployment of
conventional CCS. Our hope is that this article will broadly
motivate scientists and engineers to consider >90% capture in
their investigations of carbon capture materials and process
configurations, and that it will encourage the modeling
community to move beyond the artificial assumption of 90%
in their representations of CCS.

2. TECHNOECONOMIC BENEFITS OF DEEP CCS

Deep CCS may offer an inexpensive route toward deep
decarbonization of the fossil-fueled energy sector because it
requires only minor adjustments to conventional (~90%
capture) designs. Although the operating expense per tonne of
CO, avoided in deep CCS will be larger than in conventional
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(a) Conventional CCS (90% Capture)

(b) Direct Air Capture and Sequestration

Air (

(c) Deep CCS

Fuel

Figure 2. (a) In conventional CCS, typically only ~90% of the CO,
from the power plant exhaust is captured. (b) The outlet CO,
composition resulting from DACS must necessarily be less than the
inlet composition (~410 ppm of CO,). (c) With deep CCS, it is
possible to achieve an outlet composition of <410 ppm of CO,.
However, note that there may be circumstances where it is more
feasible to pursue outlet compositions >410 ppm in deep CCS.
Because deep CCS generally describes capture significantly beyond
90%, it can yield carbon positive, carbon negative, or net carbon zero/
carbon neutral outlets.

CCS due to the need to overcome incremental kinetic and
thermodynamic limitations, the increase in minimum separa-
tion work per mole of CO, captured upon moving from 90%
to ~100% capture is relatively small, namely ~0.48 and ~0.57
kJ/molCO, for pulverized coal combustion and NGCC,
respectively (all calculations are performed at a temperature
of 25 °C; for more details, see SI Section 2). The energetic
palatability of deep CCS arises from the logarithmic depend-
ence of the minimum separation work on the composition of
the inlet stream (SI Figure S2), which is ~11-15% CO, for
coal and ~4—6% for NGCC flues. By contrast, the energy
needed to compress the additional ~10% of CO, scales linearly
with the amount of CO, captured (provided that the purity of
the desorbed stream is unchanged upon moving from 90% to
~100% capture), and is only ~12 kJ/molCO,. Although
entropic irreversibilities prohibit practical attainment of these
thermodynamic minima for separation and compression,”®””
this simple calculation demonstrates that the operating expense
for deep CCS may closely approach that for conventional CCS
if incremental efficiency losses can be minimized upon
exceeding ~90% capture.
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These incremental efficiency losses can indeed be kept small
in aqueous amine scrubbers, for which the operating expense is
dominated by the reboiler duty for solvent regeneration.
Higher capture fractions can be achieved by increasing the
interfacial area of the absorber and by modulating the column
hydrodynamics with increased liquid:gas ratios, although
absorber intercooling can reduce the liquid flow rates needed.
Provided that mass transfer limitations are not prohibitive, the
rich loading is unlikely to vary substantially with capture
fraction, and the reboiler duty will scale with the increased
solvent flow.”"**”® Rochelle and colleagues recently demon-
strated that 99.1% capture from coal combustion flue can be
accomplished with only a 20% increase in solvent flow rate and
less than 5% increase in the reboiler duty with the advanced
flash stripper design, both relative to 90% capture.”* A recent
modeling study from Jiang et al.”> further demonstrated that
the advanced flash stripper design can enable 99.7% capture
from coal combustion flue gas with an increase in the cost of
CO, avoided by only $2.6/tonne and an increase in the
levelized cost of electricity by only $8.1/MWh (both relative to
90% capture). Even without extensive thermal integration of
the scrubbing system, capture fractions exceeding 99% can be
achieved with minimal added cost, but thermal degradation of
the amine solutions in the high-temperature stripper remains a
critical concern.””™®"

Many of the amine solvents that have shown promise for
fossil CCS are thermodynamically capable of capturing CO, at
compositions well below 410 ppm. However, mass transfer
limitations arising from these ultradilute CO, compositions
mandate large absorption interfacial areas with associated
capital expense, imposing a practical upper limit on the capture
fraction. In the same study referenced above from Jiang et al,”*
the authors found that approximately half of the absorber
column is needed to achieve just 3.2% of the overall CO,
capture. In scrubbers treating NGCC flue gas, which is more
dilute in CO, than coal flue gas, the interfacial areas needed to
achieve a 410 ppm outlet may become unfeasibly large and
may dominate the incremental capital expense. Considering
that many 1.5 and 2 °C IAM scenarios project that NGCC
with CCS will occupy a substantial portion of the global energy
portfolio in 2100, efforts should be directed toward the
development and testing of materials capable of performing
low-cost deep CCS from NGCC flues.*”

The superior diffusional kinetics and high volumetric
capacities of porous adsorbents make them excellent
candidates in this context, as the overall land footprint of
deep CCS units utilizing these materials can be kept fairly
small”’ Modular designs may also be possible, wherein
conventional (i.e,, ~ 90% capture) contactors can be appended
with deeper capture units in a multistage configuration that
alleviates some of the financial risk in adopting deep CCS.
Indeed, these deeper capture units could be financed by
incentives and regulatory frameworks aimed at residual
emissions reductions at a later time. Such an approach might
enable a reduction in incremental capital and operating
expenses, given that smaller contactors could be used for the
higher concentration separation upstream and thermodynamic
tuning of the stages could be optimized to minimize heat
transfer inefficiencies. The immense diversity of amine-
functionalized adsorbents renders them particularly well suited
for this application, because the capture material (and hence
the Gibbs energy of adsorption) can be varied at different
stages to achieve the desired capture fraction, assuming kinetic
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limitations are not governing.%_85 In particular, amine-
appended metal—organic frameworks exhibiting cooperative
adsorption could enable precise control over the adsorption
enthalpies in each stage, which may lead to considerable
energy savings for the overall unit, especially if direct-contact
steam stripping is used for regeneration.**””" Research into
these adsorbents is only now emerging, and will benefit from
the development of new models and technoeconomic analyses
to establish realistic cost and energy considerations that will
guide their development for deep CCS. For additional
discussion of potential sorbent materials and process
configurations for deep CCS, see SI Section 3.

Given that deep CCS will produce outlet streams with CO,
concentrations similar to that in ambient air, the deployment
of materials and process configurations in deep CCS may
synergistically inform cost reductions for DACS through
technological learning.”””"*> We anticipate that for suitable
coal and NGCC units, the cost of implementing deep CCS will
be lower than that for DACS for a number of reasons. For
example, unless wind currents can be harnessed effectively,”
DACS requires pressurization of the inlet air with the aid of
large fans operating with low-carbon electricity (Figure 2b). In
the ~1 MtCO,/yr design from Carbon Engineering, 61 kWh/
tonne CO, of electricity is needed to support an air velocity of
1.4 m/s in a fan with inlet area of 45000 m>°° In contrast,
deep CCS does not require sizable fans, because it draws
directly from a pressurized flue. Another requirement for direct
air capture plants is that they operate at ambient temperature,
given the impracticality of heating large quantities of ambient
air. Therefore, for a temperature-swing process, large amounts
of sensible heat would be required to regenerate the sorbents,
which typically have large heat capacities and/or low thermal
conductivities. On the other hand, the temperature of a deep
CCS inlet can be controlled with direct contact coolers that are
already employed commercially. The above-ambient sorption
temperatures that could be utilized in deep CCS would require
less sensible heat relative to DACS and may also enable a stark
reduction in water coadsorption in solids, due to the
exponential dependence of relative humidity on temper-
ature.””>

We note that DACS also offers advantages that are otherwise
inaccessible with deep CCS. For example, direct air capture
can ameliorate legacy emissions from unmitigated fossil fuel
combustion. Additionally, DACS operations are inherently
more flexible in their geographical placement than CCS
technologies, and as such the cost of transporting and storing
CO, may be lower for DACS than for CCS operations.
Additionally, direct air capture does not require pretreatment
of the incoming air to protect the capture media from toxic
gases (e.g, SO, and NO,), which can be particularly
problematic for coal capture units.”””” Although these
economic benefits are unlikely to surmount the intrinsic cost
differential between DACS and deep CCS, there are scenarios
where the large-scale deployment of DACS may be justified in
the near-term.”>***® An improved understanding of all factors
influencing deployment of DACS relative to deep CCS is direly
needed in conjunction with research into materials and process
configurations devoted to each approach.

3. THE PROSPECT OF NEGATIVE EMISSIONS

Conservation of mass requires that the CO, composition of a
DACS outlet be less than the inlet air composition. DACS and
deep CCS both obey the same thermodynamic limit of 100%
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capture, and thus while it is commonly thought that fossil CCS
is at best carbon neutral (~410 ppm outlet), there is no
fundamental reason why a deep CCS exhaust cannot be carbon
negative with respect to the inlet air supply (Figure 2c).
However, even for a ~ 0 ppm of CO, deep CCS outlet, the
negative emissions achieved inside the plant boundaries (which
we define as starting at the point of fuel combustion and
ending at the exhaust of the CO, capture unit) will be small
compared to the current and anticipated lifecycle emission
rates for the coal and natural gas supply chains in the United
States (SI Section 7). As such, deep CCS should not be viewed
as a CDR technique, but the pursuit of sub-410 ppm outlet
compositions can still offset a portion of the upstream
emissions and is warranted if the incremental cost can be
kept low. Because the proportion of CO, in NGCC flue
streams is smaller than that in coal flue gas, it may be more
suitable to target these sub-410 ppm levels in NGCC
combustors (SI Section 6). With regards to process design,
the weak mass-transfer driving forces associated with capturing
CO, from sub-410 ppm streams will likely require use of
capture media with rapid diffusional kinetics (e.g, certain
porous adsorbents).””

BECCS is one proposed strategy where lifecycle negative
emissions can theoretically be achieved, and which may
additionally benefit from the pursuit of deeper capture targets.
The extent of negative emissions achievable in BECCS is
intertwined with direct/indirect land use changes and the
carbon footprint of the biomass.”’ ™' Achieving deeper
capture targets in the BECCS unit could synergistically reduce
the amount of biomass that must be processed upstream to
achieve a fixed negative emission rate, albeit at some reduction
in energy efliciency due to the need to overcome the increased
parasitic load.**'”” Consider the direct firing of European
Miscanthus as a representative energy-dedicated crop. In order
to remove 1 MtCO, equivalents per year (MtCO,e/yr) on a
lifecycle basis, we estimate that achieving a 99.5% capture
fraction with deep BECCS requires 3900 fewer hectares of
arable land relative to 90% capture (a savings of ~10%),
without taking into account land use changes that could further
magnify these reductions (see SI Section 4). Additionally, since
the freshwater demand for BECCS is expected to be
dominated by losses due to evapotranspiration during biomass
cultivation, the transition from 90% to 99.5% capture could
save more than 15 MtH,O/yr, or ~10% of the freshwater
needed for 90% capture. Although the additional parasitic load
incurred in achieving this deeper capture target would decrease
electrical production, this inefficiency is ameliorated in part by
the embodied energy saved in consuming less biomass. The
incremental parasitic load associated with deep BECCS is
expected to decrease over time with the development of new
technology, bringing the lifecycle energy efficiency of deep
BECCS closer to that for conventional BECCS. Co-generation
of bioenergy with a low-carbon fuel, such as natural gas, may
close this efficiency gap without substantially reducing the
lifecycle carbon negativity.'>'% Ultimately, the calculations
described here are order-of-magnitude estimates obtained
using the average multiplicative factors detailed in SI Section 4,
and are intended to motivate further research into deep
BECCS. Detailed investigations of the technoeconomics and
food—energy—water implications of deep BECCS are needed
in order to more accurately assess the practical potential of this
concept.
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4. THE POTENTIAL FOR DEEP IMPACT

All of the IAM scenarios featured in the 27th Energy Modeling
Forum required cumulative sequestration of at least 600
GtCO, by 2100 to meet 2 °C warming targets, but to the best
of our knowledge, none of these scenarios considered capture
fractions significantly beyond 90% during peak deployment, or
the period of time during which the maximum number of
plants are outfitted with fossil CCS.2%M0~18 Thdeed, while
90% capture is not a strict limit in IAMs, it is frequently
informed by technoeconomic assessments developed for first-
generation CCS designs.”””" Given the stringent carbon
budgets of 1.5 °C scenarios, the residual emissions from
conventional fossil CCS units could necessitate an accelerated
transition to renewables or other technologies with lower
lifecycle emissions.'”>>"'*'*° Alternatively, the rapid develop-
ment and commercialization of deep CCS may provide a
smoother transition toward renewables and, by minimizing
residual emissions from the fossil-fueled power generation
sector, may obviate a substantial amount of CDR over the
century.z's’121

Working with published results from the IAM MESSAGE
GLOBIOM,'"** we estimate that replacing existing fossil CCS
units with deep CCS units worldwide could avoid an additional
~1.8 GtCO,/yr in the 2 °C scenario at peak deployment. In
the 1.5 °C scenario, which projects lower overall deployment
of CCS, the CO, avoided is reduced to only ~770 Mt/yr (SI
Section 5). However, if cost reductions over the next ~40 years
can enable the implementation of deep CCS in existing coal
and NGCC units for which conventional CCS is currently
considered uneconomical, the impact of deep CCS in the 1.5
°C scenario can be significantly augmented. Indeed, if deep
CCS is ultimately recognized as a technique for reducing the
need for CDR, the number of coal and NGCC plants deemed
suitable for CCS may exceed current projections. We
emphasize that deep CCS should not be regarded as a
replacement for CDR, because there are circumstances where
CDR can provide economic, social, and/or environmental
benefits that are otherwise inaccessible with deep
CCS.30°31237125 Hgwever, in some cases, deep CCS has the
potential to serve as a viable and cost-effective alternative to
replace certain CDR strategies that currently face significant
technical or economic hurdles. Note that the above analysis
represents at best an order-of-magnitude estimate of the
impact of deep CCS in these particular scenarios, and
ultimately, the detailed incorporation of deep CCS into IAM
frameworks will be needed in order to determine the
circumstances under which CDR can truly be avoided by
deep CCS."*°

In an initial evaluation of potential emissions avoided from
retrofitting coal and NGCC fleets with deep CCS, we focused
on plants in the United States, which in 2017 generated 14.5%
of global combustion CO, emissions.” Working with 2018 data
from the Energy Information Administration,'*”"'%®
identified plants potentially suitable for deep CCS retrofit by
categorizing operational coal and NGCC units by electrical
production and age. Assuming conservative fuel-based parasitic
loads of 13% for NGCC and 21% for coal,®* we estimate that a
combined total of 128 MtCO,/yr of emissions can
theoretically be avoided. Due to the assumptions made in
this analysis (see SI Section 6), this calculation should be
regarded as an order-of-magnitude estimate of impact. More
accurate assessments can be achieved with plant-specific
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considerations and improved parametrizations of CCS
technoeconomic models to account for deep capture
talrgets.zz’129

As discussed above, although deep CCS can achieve negative
emissions inside the plant boundaries, these removals are likely
to be outweighed by supply chain emissions upstream that are
bounded by extraction, transportation, and processing of the
fuel. These supply chain emissions include fugitive (uninten-
tional) and vented (intentional) emissions from coal mines,
natural gas reservoirs, pipelines, railcars, ships, and process
equipment.'*°~"** However, the increment between 90 and
~100% capture can be carbon negative if supply chain
emissions can be kept small. Even if this increment is not
carbon negative, it could still alleviate dependences on some of
the least viable CDR strategies projected by current 90%
model scenarios, so long as the residual emissions captured
exceed the supply chain emissions (Figure 3). Working with

1 GtCO,/yr
avoided with

deep CCS
2.7 Mha

Terrestrial Enhanced
Weathering

Figure 3. We estimate that deep CCS can avoid ~1 GtCO,/yr of
residual emissions globally, which translates to 80 Mha of forest (with
a mean carbon uptake of 3.4 tCeq/ha/yr), 2.7 Mha of land for
terrestrial enhanced weathering (assuming a potential of 0.1 GtCeq/
yr/Mha), 32 Mha of cropland for BECCS with an energy-dedicated
crop (assuming a mean carbon uptake of 8.6 t Ceq/ha/yr), or 1000
DACS plants (assuming a net CDR rate of 1 MtCO,/yr per
plant). 5660140

lower bound emission factors of 12.4 kgCO,e/MWh (derived
in SI Section 7) and 3.6 gCO,e/M]J for the coal"*® and natural
gas'®” supply chains, respectively, we find that the incremental
carbon intensity for a 100 ppm deep CCS outlet is —1.3
MtCO,e/yr (coal) and —2.3 MtCO,e/yr (NGCC) for the
plants considered for retrofit in the United States. In
comparison, one of the DACS designs from Carbon Engineer-
ing requires 8.81 GJ of natural gas per tonne of CO,
captured,”” and our calculations show that the associated
supply chain emissions reduce the effective CDR rate from 966
to 931 ktCO,/yr, again assuming the emission factor of 3.6
gCO,e/MJ from ref 137."7 Given that the net carbon
intensities of deep CCS and DACS are expected to be highly
sensitive to upstream emissions, it will be imperative to reduce
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these emissions to maximize the overall impact of both
technologies.”"**%*

5. OUTLOOK

Targeting CO, capture fractions significantly beyond 90% is
technoeconomically feasible and could reduce the need for
large amounts of costly or unfeasible CDR if implemented at
scale in the near term. The technological learning gained from
commercializing deep CCS could synergistically inform
designs for DACS and deep BECCS, alleviating some of the
uncertainty in accessing large-scale technological CDR. We
note that the principles of deep CCS can be extended in some
cases (e.g, iron and steel manufacturing) to the industrial
sector, which in 2017 was responsible for 24% of global
combustion CO, emissions.”'*'~'* Additionally, we highly
encourage reparametrization of IAMs to more thoroughly
investigate the potential of deep CCS/deep BECCS for various
socioeconomic and technological assumptions, particularly
given that the artificial assumption of ~90% capture may
necessitate a shift to suboptimal power generation mixes in
deep decarbonization pathways.”>”® Although materials
capable of performing deep CCS already exist, continued
improvements in process efficiency are warranted to bring the
intrinsic costs of deep CCS even closer to those of
conventional CCS, especially as natural gas continues to
occupy a larger portion of the global energy portfolio.””'*”
Although the incremental costs associated with performing
deep CCS can be kept low relative to the base cost of
conventional CCS, widespread deployment of deep CCS will
be predicated on the successful implementation of conven-
tional CCS.
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