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A B S T R A C T   

Amine-appended metal–organic frameworks of the class Mg2(dobpdc) are promising candidates for efficient 
carbon capture in part due to their step-shaped CO2 adsorption behavior. However, the existing isotherm models 
are lacking as they are unable to capture the complicated chemisorption mechanisms which are still not well 
known for these materials. Here, a chemistry-based isotherm model is developed and fit to experimental CO2 
adsorption data for dmpn-Mg2(dobpdc). Reactions for a cooperative adsorption mechanism are proposed, and 
the reaction pathway is optimally selected. The chemistry-based model shows an improvement in prediction by a 
factor of 6 when compared to a recent isotherm model in literature. A plant-wide model is developed for a 
moving bed based adsorber/desorber and techno-economic optimization is performed. For likely values of price 
and lifespan, the moving bed process gives a significant improvement in economics when compared to a fixed 
bed contactor process and a traditional MEA capture system.   

1. Introduction 

Aqueous amine solutions are currently the only mature technology 
for post-combustion from fossil fuel-based power generation plants; 
however, the significant energy penalty associated with the regenera
tion of these solutions and their corrosive nature has precluded their 
wide-spread implementation and motivated diverse research investi
gating alternative sorbent materials for efficient CO2 capture (Sumida 
et al., 2012). Among these materials, amine-appended frameworks of 
the type amine–Mg2(dobpdc) (dobpdc4− = 4,4′-dioxidobiphenyl- 
3,3′dicarboxylate) have emerged as leading candidates for CO2 capture. 
The majority of these adsorbents capture CO2 via a unique cooperative 
chemisorption mechanism involving CO2 insertion into the metal–amine 
bond and the formation of chains of ammonium carbamate down the 
framework channels. Importantly, the step-shaped CO2 adsorption 
profiles associated with this chemisorption endow these materials with 
much higher working capacities when compared to traditional 

Langmuir-type adsorbents (Kim et al., 2020; McDonald et al., 2015; 
Milner et al., 2017). Further, by varying the appended amine, it is 
possible to tailor the CO2 adsorption step pressure (temperature) to the 
capture application of interest (Siegelman et al., 2017). One of these 
adsorbents, dmpn–Mg2(dobpdc) (dmpn = 2,2-dimethyl-1,3-dia
minopropane), exhibits stepped CO2 uptake at 40 ◦C and ~15 mbar and 
retain a stable CO2 capacity over the course of 1000 humid CO2 
adsorption/desorption cycles, and as such it is a promising candidate for 
post-combustion CO2 capture from coal flue gas (Milner et al., 2017). 

When evaluating the potential of any candidate adsorbent technol
ogy for CO2 capture, design and optimization of potential capture pro
cesses using mathematical models is critical to enable a realistic 
understanding of energy penalties associated with capture and how 
these can be minimized. It is particularly important to accurately predict 
the adsorption equilibrium and how it changes with operating condi
tions, specifically temperature and partial pressure, over the entire ex
pected range for adsorption and desorption. The prediction of 
adsorption equilibria for solid adsorbents is typically done using 
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traditional “off the shelf” isotherm models, such as the Langmuir or Sips 
models (Foo and Hameed, 2010). However, many of these traditional 
isotherm models have been historically developed for adsorbents 
exhibiting physisorption, and as such, they may not adequately capture 
complicated isotherm behavior that may be exhibited by a functional
ized sorbent. In a few cases, however, traditional isotherm models have 
been altered and expanded upon in an effort to accurately prediction 
CO2 adsorption equilibria in amine-appended Mg2(dobpdc) materials 
(Hefti et al., 2016; Hughes et al., 2021; McDonald et al., 2015, 2012; Pai 
et al., 2019). For example, CO2 uptake in mmen-M2(dobpdc) (mmen =

N,N′-dimethylethylenediamine), was modeled using piecewise modified 
Langmuir-Freundlich equations for pre- and post-step behavior (McDo
nald et al., 2015, 2012), but this disjunctive approach renders it unac
ceptable for use in process modeling and optimization. Notably, the 
weighted dual-site Langmuir model used by Hefti et al. (Hefti et al., 
2016) was able to accurately predict the CO2 adsorption profiles for 
mmen–M2(dobpdc) (mmen = N,N′-dimethylethylenediamine; M = Mg, 
Mn, Fe, Co, Zn). Recently, Pai et al. (Pai et al., 2019) separately modeled 
chemisorption and physisorption of CO2 in mmen–Mg2(dobpdc) and 
used both single-site and dual-site Langmuir models to fully describe the 

Nomenclature 

MB Moving bed 
MOF Metal-organic framework 
MEA Monoethanolamine 
TSA Temperature swing adsorption 
Am Unreacted dmpn amine 
CO*

2 Adsorbed phase CO2 
B, C Cooperatively adsorbed species 
MINLP Mixed integer nonlinear programming 
AIC Akaike information criterion 
CTP, CL Tube count constants 
DSF Drive safety factor (=2) 
EAOC Equivalent annual operating cost 
NETL National energy technology laboratory 
aH Henry’s parameter [Pa] 
A1 Cross-sectional area of a repeating single tube unit in the 

reactor [m2] 
bH Henry’s parameter [K] 
Cg Gas phase concentration [mol/m3] 
Csurf Surface concentration [mol/m3] 
Cp Specific heat capacity [kJ/kg/K] 
Costdist Cost of distributors within the moving bed reactor [$MM] 
Dz Axial dispersion coefficient [m2/s] 
dp Particle diameter [m] 
Db Bed diameter [m] 
DH Discharge height [m] 
Ephys Langmuir isotherm parameter [kJ/mol] 

f̂
v
CO2

, f̂
s
CO2

Vapor phase fugacity and solid phase fugacity [Pa] 
f0
CO2 

Reference state CO2 fugacity [Pa] 
Js Axial solids flux [kg/m2/s] 
kH,CO2 Henry’s parameter [Pa] 
Keq Equilibrium coefficient [-] 
k0 Equilibrium coefficient parameter [-] 
k1 Equilibrium coefficient parameter [K] 
KL Langmuir isotherm term [Pa− 1] 
kphys,0 Langmuir isotherm parameter [Pa− 1] 
kOC Solid mass transfer coefficient for the chemisorbed species 

[s− 1] 
kOP Solid mass transfer coefficient for the physisorbed species 

[s− 1] 
kf Film mass transfer coefficient [m/s] 
H Enthalpy [kJ/kmol] 
h Heat transfer coefficient [kW/m2/K] 
N, M Number of cooperatively adsorbed species reactions 
n, m Stochiometric coefficients 
Nphys Langmuir isotherm parameter [mol/kg] 
Ntube Number of embedded heat exchanger tubes 
P Pressure [bar or Pa] 
Pe′ Peclet number [-] 

Pt Tube pitch [m] 
PBE Power required by bucket elevators [kW] 
q* Equilibrium loading [mol/kg] 
q Particle loading [mol/kg] 
Q Total adsorbed phase loading [mol/kg] 
QCEX Cross exchanger duty [kW] 
R Ideal gas constant [kJ/mol/K] 
Rep Particle Reynolds number [-] 
Scp Particle Schmidt number [-] 
T Temperature [K] 
T0 Reference temperature, 298 K 
t Time [seconds] 
UCEX Universal cross exchanger heat transfer coefficient [kW/ 

m2/K] 
v Superficial velocity [m/s] 
V̇BE Solids volumetric flowrate [m3/hr] 
wthx Heat exchanger tube width [m] 
y Gas phase mole fraction [-] 
z Adsorbed phase mole fraction [-] 
ϕ̂CO2 Vapor-phase fugacity coefficient [-] 
γCO2 

CO2 activity coefficient [-] 
τA, τB Activity coefficient interaction parameters [-] 
τA,0, τB,0 Estimated interaction parameters [-] 
τA,1, τB,1 Estimated interaction parameters [K] 
δ Total number of amine sites/CO2 molecules in a 

chemisorption product 
ΔHCO2 Heat of adsorption [kJ/mol] 
Σ Weighting function for chemistry model parameter 

estimation 
εb Bed voidage [-] 
ρp Solid particle density [kg/m3] 
∂Q
∂t Mass transfer rate between the gas and solid phase [mol/ 

kg/s] 
umf Minimum fluidization velocity [m/s] 
μg Viscosity [Pa•s] 
ΔTLM Log mean temperature driving force [K] 

Common Subscripts 
i Species 
chem Chemisorption 
phys Physisorption 
g Gas phase 
s Solid phase 
p Particle 
t, tube Tube 
w Heat exchanger tube wall 
ads Adsorber 
des Desorber 
HX Heat exchanger  
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adsorption data. We have previously proposed a modified, dual-site Sips 
isotherm model to accurately predict CO2 adsorption equilibria in 
dmpn–Mg2(dobpdc) (Hughes et al., 2021). Many of these isotherm 
models are heuristic and may give good fits to experimental data, but do 
not give any insight into the underlying adsorption mechanisms. Addi
tionally, many of the isotherm models are developed for physisorption 
mechanisms and are incapable of capturing underlying chemisorption 
mechanisms which can give important insight into process performance 
and behavior. 

Development of chemistry-based isotherm models for functionalized 
solid sorbents can be beneficial for improving the current understanding 
the reaction mechanisms, which may not be well known or well un
derstood for novel sorbents, especially because of the difficulty of 
identifying species formed and measuring their evolving concentration 
with operating conditions at the interior of solids. A chemistry-based 
model also can improve the accuracy of the CO2 adsorption capacity 
to experimental data as well as improve the modeling fidelity by 
quantifying interactions of other species present in flue gas, specifically 
water, and calculating a more accurate estimate of heat of adsorption. 
Additionally, a chemistry model may also aid in the development of new 
sorbent technologies. In particular, transient products that are formed 
during adsorption can be difficult to detect and quantify in real-time, 
and a chemistry model that can predict adsorption equilibrium, 
adsorption products, and heats of adsorption can reduce the need for 
complex experimental investigations and reduce the time it takes to 
identify new possible sorbent variants and aid in the development of 
new technologies. 

Currently, there are few chemistry-based models for solid sorbents in 
the literature that include reactions between adsorbate and adsorbent 
(Abdollahi-Govar et al., 2015; Lee et al., 2007a; Lee et al., 2007b; Lee 
et al., 2008; Liu, 2015). The models follow a similar structure: formu
lation of reactions specific to the system of interest, kinetic equation 
formulation for the reactions of interest, and solutions of the model for 
either kinetic or equilibrium conditions. These chemistry-based models 
do an adequate job at predicting either the kinetic or equilibrium data 
for their respective sorbents, but the adsorption equilibrium behavior of 
amine-appended MOFs is significantly different than the sorbents for 

which these chemistry models were developed, specifically the sensi
tivity of the CO2 loading to temperature and pressure. For the chemistry- 
based models referenced above, significant additions would be required 
for them to accurately predict the adsorption equilibrium behavior of 
amine-appended MOFs being considered for carbon capture. 

Recently, Kundu et. al (Kundu et al., 2018) presented an adsorption 
equilibrium model which is a combination of quantum and statistical 
mechanics that is able to predict the step-shaped adsorption profiles for 
mmen–Mg2(dobpdc). The model, described as a lattice model, is 
informed and parameterized using density-functional theory and ac
counts for the presence of chemisorption products that form via a 
cooperative adsorption mechanism. Marshall (Marshall, 2022) has taken 
this lattice model and made the equations suitable for use in process 
simulation. The author also performs parameter estimation for low CO2 
concentration (PCO2 < 100 mbar) data for mmen–Mg2(dobpdc) and the 
model shows a good fit to the data. This lattice model is one of the only 
models currently available that attempts to model the cooperative 
adsorption mechanism for amine-appended Mg2(dobpdc). However, 
dmpn–Mg2(dobpdc) is known to form two different chemisorption 
products forming both ammonium carbamate species at very low pres
sures and also a major product that is a mixture of ammonium carba
mate and carbamic acid species in an approximate 1:1 ratio (Forse et al., 
2018). The lattice model presented by Marshall (Marshall, 2022) is 
derived for only a single cooperatively adsorbed species, and re- 
estimation of the model parameters and subsequent analysis of the re
sults would be required to evaluate if this lattice model is applicable to 
dmpn-Mg2(dobpdc). Also of note, none of the works noted above have 
considered heat of adsorption as a constraint while developing the 
chemistry models and estimating the kinetic parameters. However, as 
the equilibrium adsorption and heat of adsorption are thermodynami
cally related, heat of adsorption should be considered as a constraint 
while estimating the parameters of the chemistry model for thermody
namic consistency. 

Contactor technology plays a key role in obtaining the maximal 
performance of solid sorbents (Bhattacharyya and Miller, 2017). While 
the contactor technology for solvent-based capture is often absorber/ 
stripper, selection of the appropriate contactor technology for solid- 

Fig. 1. Illustration of the moving bed TSA process considered in this work.  
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based capture is not straightforward. Optimal selection of the contactor 
technology among the potential technologies- such as fixed beds of 
various types, moving beds, and fluidized beds- not only requires 
consideration of material characteristics such as particle attrition resis
tance but also satisfactory evaluation of performance characteristics of 
the contactor (Bhattacharyya and Miller, 2017). Therefore, detailed 
modeling of the contactor technology is extremely important when 
designing and evaluating novel capture processes. Few models exist in 
literature for the contactors for the amine-appended MOF capture pro
cesses, and most of these studies consider fixed bed processes (Ga et al., 
2021; Hefti et al., 2016; Joss et al., 2017; Marshall, 2022; Pai et al., 
2019). Previously, the authors of this work have presented a process 
model of a (TSA) process for dmpn–Mg2(dobpdc) and have shown that 
the technology, with efficient thermal management, can compete 
economically with a traditional monoethanolamine (MEA)-based post- 
combustion capture process (Hughes et al., 2021). Efficient heat 
removal/addition is challenging in fixed beds due to limiting heat 
transfer coefficient between the gas phase and stagnant solid phase in a 
fixed bed. It has also been reported in our previous work that depending 
on the mass and heat transfer characteristics, a considerable amount of 
the bed may be underutilized when the breakthrough happens in a fixed 
bed design (Hughes et al., 2021). Obviously, underutilization of the bed 
material will lead to a higher capital cost. Furthermore, recovery of the 
residual heat from the solids at the end of desorption and utilization of 
that heat for pre-heating the solids at the end of adsorption step before 
solids undergo desorption are crucial for reducing the energy penalty. 
Moving beds (MBs) can address, to a great extent, many of the draw
backs of the fixed bed processes mentioned above. Additionally, as 
moving beds operate under much milder flow regime compared to the 
fluidized beds, they have great potential for MOFs that generally cannot 
withstand strong attrition. Moving beds continuously operate with solid 
particles entering at the top of the bed while gas enters at the bottom and 
flows upward through the moving solid particles (see Fig. 1). This 
counter-current flow pattern results in large driving forces for mass and 
heat transfer. To the best of our knowledge, there is no paper in the open 
literature on the modeling of the MB-based CO2 capture process using a 
diamine-appended MOF. Furthermore, the existing literature for the 
MB-based CO2 capture processes has mainly evaluated energetics, re
covery, and efficiency, but not the complete economic analysis consid
ering capital and operating costs. Techno-economic process analysis is 
necessary for evaluating the critical tradeoff between capital and oper
ating expenditures. 

In this work, a chemistry model for the adsorption of CO2 on 
dmpn–Mg2(dobpdc) is developed for the first time. Based on what is 
known from experiments about the adsorption of CO2 in this material, 
we modeled the chemisorption using two different reaction sets. The 
parameters for each reaction set are optimally estimated using least- 
squares fitting to available isotherm data. Additionally, the isosteric 
heat of adsorption is implemented as an inequality constraint in the 
parameter estimation problem, which, as noted above, is not typically 
done for chemistry-based model development. The framework for the 
chemistry model developed in this work is also generic and the approach 
can be applied to other chemisorbents by incorporating suitable reaction 
pathways. A detailed model for a moving bed contactor is then devel
oped using the chemistry-based adsorption equilibrium model and a 
mass transfer model (Hughes et al., 2021), and is then used to simulate a 
moving-bed TSA capture process. Techno-economic optimization is then 
performed, and the results are compared to a state-of-the-art MEA 
process. 

2. Methods and model development 

2.1. Chemistry model 

In this section, we present the equations for a chemistry-based model 
to describe the equilibrium CO2 adsorption behavior for 

dmpn–Mg2(dobpdc). The model assumes that CO2 adsorption initially 
proceeds through an adsorbed phase “free” CO2 which is in equilibrium 
with CO2 in the vapor phase. This adsorbed CO2 then reacts with the 
metal-bound amines to form the chemisorption products, with relative 
concentrations determined by the set of equilibrium relationships for 
each reaction that is being considered. Additionally, balance equations 
such as the mole fraction summation and amine site balance are used to 
calculate the loadings of each participating species and importantly the 
total loading of CO2. A simple Langmuir model is also considered to 
predict the adsorption of the physisorbed CO2 product. The isosteric 
heat of adsorption is calculated as a part of the model and is imple
mented as an inequality constraint during parameter estimation. While 
some chemistry models have used the heat of adsorption for qualitative 
evaluation and validation, to our knowledge, no reported models have 
used the heat of adsorption during estimation of the model parameters 
or in the model development stage. Optimal selection of the reaction set 
was carried out using an information criterion to avoid over
parameterization of the model. The framework for the chemistry model 
developed in this work is also generic and can be applied to any 
chemisorbent. Modeling and parameter estimations were performed in 
an equation-oriented framework and solved as a nonlinear program
ming problem, which allows for the adsorption reactions to be changed 
without the need for a complex and a time-consuming analytical solu
tion (if one even exists). The solid–vapor equilibrium equation is inde
pendent of the sorbent chemistry and the additional equations, such as 
mole fraction summation and site balance, are only dependent on the 
stoichiometry of the adsorption reactions. Additionally, the heat of 
adsorption equation can be a generic equation, such as the isosteric 
prediction used in this work or a user defined equation in the parameter 
estimation framework. 

2.1.1. Solid-Vapor equilibrium and activity coefficient modeling 
The relationship between the gas-phase CO2 and free CO2 is deter

mined by equating the fugacity of the solid phase and the vapor phase, 
shown in Eqs. (1) and (2). 

f̂
v
CO2

= f̂
s
CO2

(1)  

yCO2 ϕ̂CO2 P = γCO2
zCO*

2
f 0
CO2

(2)  

Vapor-phase fugacity is calculated using the partial pressure of CO2 and 
the vapor-phase fugacity coefficient (ϕ̂CO2 ). In this work, it is assumed 
that the vapor phase behaves ideally (ϕ̂CO2 = 1). The solid-phase 
fugacity is calculated using the CO2 activity coefficient (γCO2

), the 
mole fraction of free CO2 

(
zCO*

2

)
, and a reference state CO2 fugacity 

(f0
CO2

). The activity coefficient is modeled using a multicomponent 
Margules equation (O’Connell and Haile, 2005) shown in Eq. (3) and 
only considers binary interaction parameters for the free CO2 and an 
amine which has not reacted yet, simply denoted as Am. 

ln
(
γCO2

)
= zAm

[
τA − τB

(
zAm − 2zCO*

2

) ]
− zCO*

2
zAm

[
τA + 2τB

(
zCO*

2
− zAm

) ]

(3)  

In Eq. (3), τA and τB are interaction parameters of the activity coefficient 
model for free CO2 and dmpn, respectively, and vary with temperature 
according to Eqs. (4) and (5). 

τA = τA,0 +
τA,1

T
(4)  

τB = τB,0 +
τB,1

T
(5)  

The reference state fugacity is modeled using Henry’s Law, as shown in 
Eqs. (6) and (7) (Morgan et al., 2017). 

R. Hughes et al.                                                                                                                                                                                                                                 



Chemical Engineering Science 287 (2024) 119679

5

f 0
CO2

= kH,CO2 (6)  

ln
(
kH,CO2

)
= aH +

bH

T
(7)  

2.1.2. dmpn–Mg2(dobpdc) chemistry and reaction modeling 
As discussed above, dmpn–Mg2(dobpdc) material is unique among 

the amine–Mg2(dobpdc) materials studied to date in that it reacts with 
CO2 to form a mixed chemisorption product consisting of chains of 
ammonium carbamate that interact via hydrogen bonding with carba
mic acids at neighboring sites across the framework channel (Forse 
et al., 2018; Milner et al., 2017). Forse et al. (Forse et al., 2018) used 
solid-state NMR spectroscopy to study CO2 chemisorption in 
dmpn–Mg2(dobpdc) and found that while the mixed product is the 
dominant product at all partial pressures of CO2, pure ammonium 
carbamate chains that are not interacting with carbamic acid species are 
also formed in small quantities at low partial pressures. Additionally, the 
presence of a physisorbed CO2 species is confirmed in these NMR 
studies. Water is expected to alter the mechanisms of adsorption of CO2 
onto dmpn-Mg2(dobpdc), but it has been shown experimentally using 
column breakthrough data to have a small effect on total CO2 uptake 
(Milner et al., 2017). Incorporating water effects would require well 
characterized adsorption equilibrium data capturing the effect of water 
concentration on CO2 loading over a range of pressure and temperature 
expected for post-combustion capture. However, such data are not 
currently available. Therefore, at this stage of development of the 
chemistry-based isotherm modeling, the chemistry and reaction 
modeling presented in this section only consider the adsorption of pure 
CO2. 

Given this evidence of two distinct chemisorption processes, we 
considered two different product formation reactions in our chemistry 
model. Our model was developed based on the hypothesis that the 
product formation in each case proceeds in multiple steps, see reactions 
R(1)–R(3) for formation of the first product and R4–R6 for formation of 
the second product below. For example, the first step in both scenarios is 
an initiation reaction (R1 or R4) in which some number of CO2 mole
cules (n1 or m1) reacts with the same number of amine sites to form an 
initial product (B1 or C1, respectively). Here, only a single type of amine 
site is considered (Am). Then, a series of propagation reactions occur in 
which the product formed in the initiation reaction grows by stoichio
metric coefficient (ni or mi). The variables N and M in R3 and R6, 
respectively, correspond to the total number of reactions considered. It 
should be noted here that since the formation reactions proposed below 
are equivalent, that is they do not distinguish between chemisorbed 
species (i.e., the mixed product or ammonium carbamate only), and 
therefore models with reversed values for N and M are equivalent. For 
example, a model with N=1 and M=0 is equivalent to a model with N=0 
and M=1. 

Note, all the above reactions were developed assuming a 1:1 reaction 
between CO2 and the appended diamine, as has been established in 
previous studies (McDonald et al., 2015; Milner et al., 2017). To sum
marize, the model considers two main products, B and C, which are 
present as a varying number of chains of varying sizes (B1, B2, BN, C1, C2, 
CN, etc.). Reactions R1-R3 encompass all the chain formation reactions 
for product B and reactions R4-R6 encompass all the chain formation 
reactions of product C. The stochiometric amounts of CO2 in these re
actions (ni and mi) which determines the chain sizes and the number of 
reactions/number of chains needed to accurately predict the adsorption 
behavior (N and M) were determined in this work.  

n1CO*
2 + n1Am⇌B1 (R1) 

n2CO*
2 + n2Am + B1⇌B2 (R2) 

⋮  
nNCO*

2 + nNAm + BN− 1⇌BN (R3)   

m1CO*
2 + m1Am⇌C1 (R4) 

m2CO*
2 + m2Am + C1⇌C2 (R5) 

⋮  
mMCO*

2 + mMAm + CM− 1⇌CM (R6)  

The equilibrium relationship for the reactions considered in this work 
and the temperature dependency of the equilibrium coefficient are 
shown in Eqs. (8) and (9), respectively. 

Keq,j =
∏J

i=1
zi

vi (8)  

ln
(
Keq,j

)
= k0,j +

k1,j

T
(9)  

Here, Keq is a dimensionless, mole fraction-based equilibrium coefficient 
developed assuming an elementary relationship in which the exponent 
for each species is equal to the stochiometric coefficient. The equilib
rium coefficient varies with temperature according to the correlation in 
Eq. (9). 

2.1.3. Component and site balances 
The mole fraction of each species is related by the mole fraction 

summation as shown in Eq. (10) 

zAm + zCO*
2
+
∑N

j=1
zBj +

∑M

j=1
zCj = 1 (10)  

The equilibrium loading (q*
i ) for each product and species predicted by 

the chemistry model can be calculated using Eq. (11). 

q*
i = Q⋅zi (11)  

Here, Q is the total loading of the system which can be determined by 
solving an amine site balance shown in Eq. (12). The amine site balance 
relates the number of amine sites contained in the chemisorption re
actants and products (left-hand side of the equation) to the total number 
of amine sites present on the MOF (right-hand side of the equation), 
which is a value that has been determined experimentally to be 3.82 
mol/kg (Milner et al., 2017). 

q*
Am +

∑N

j=1
δBj ⋅q

*
Bj
+
∑M

j=1
δCj ⋅q

*
Cj
= QAm (12)  

Here, δ is defined as the number of amine sites in the chemisorption 
product of interest. This value can be determined by taking the sum of 
the stochiometric coefficients for the formation reaction of the product 
of interest as well as all preceding reactions, as shown in Eqs. (13) and 
(14). 

δBj =
∑j

i=1
ni (13)  

δCj =
∑j

i=1
mi (14)  

The loading of chemisorbed CO2 can be determined in a similar manner 
using a CO2 balance, shown in Eq. (15). Since the stochiometric ratio 
between CO2 and amine is 1:1, the number of CO2 molecules contained 
in a chemisorption product is equal to the number of amine sites and can 
therefore also be represented by δ. 

q*
CO2 ,chem =

∑N

j=1
δBj ⋅q*

Bj
+
∑M

j=1
δCj ⋅q*

Cj
(15) 
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As previously mentioned, the model also considers CO2 physisorption 
represented by the Langmuir isotherm equation, shown in Eqs. (16) and 
(17) (Ruthven, 1984). 

q*
CO2 ,phys = Nphys

(
KL⋅yCO2 P

1 + KL⋅yCO2 P

)

(16)  

KL = kphys,0⋅exp
[
− Ephys

RT0

(
T0

T
− 1
)]

(17)  

Finally, the total amount of CO2 adsorbed can be calculated by summing 
the loading of free CO2, chemisorbed CO2, and physisorbed CO2. 

q*
CO2 ,tot = q*

CO2
* + q*

CO2 ,chem + q*
CO2 ,phys (18)  

2.1.4. Heat of adsorption 
The heat of adsorption can be estimated using the isosteric heat of 

adsorption equation (Lee et al., 2007a) for each loading of interest. 

∂[ln(P) ]
∂T

⃒
⃒
⃒
⃒

q*
CO2

=
ΔHCO2

RT2 (19)  

2.2. Reaction set selection and parameter estimation 

Parameters N and M, which correspond to the number of chain for
mation reactions, are integer variables, which in turn make this reaction 
set selection and parameter estimation problem a mixed integer 
nonlinear programming (MINLP) problem. However, the number of 
equations, variables, constraints, and the overall structure of the model 
will change as the N and M variables change. Therefore, relaxation of 
these integer variables to continuous variables for obtaining bounds, as 
is done in many MINLP algorithms, is not acceptable. While the MINLP 
problem can be solved by many algorithms (including variants of Branch 
and Bound algorithms or meta-heuristic algorithms), the values of N and 
M are expected to be low for this problem, and therefore exhaustive 
enumeration was used to obtain globally optimal solution for N and M. 
The corresponding nonlinear programming (NLP) subproblem shown 
below in Eq. (20) was solved for each combination of N and M. 

min
θ

(
q*

CO2 ,exp − q*
CO2 ,model

)’
Σ− 1
(

q*
CO2 ,exp − q*

CO2 ,model

)

s.t.
f (μ, η, θ) = 0
g(μ, η, θ)⩽0

(20)  

Here, q*
CO2 ,exp represents the experimental equilibrium loading of CO2, 

q*
CO2 ,model represents the equilibrium loading of CO2 predicted by the 

chemistry model, θ represents the vector of estimated parameters, and 
f(μ, η, θ) and g(μ, η, θ) represent the equality constraints and inequality 
constraints of the model, respectively. Additionally, μ represents model 
inputs such as temperature and pressure, and η represents model vari
ables such as mole fractions. In this problem, the equality constraints 
consist of the chemistry model equations, and the inequality constraints 
consist of variable bounds along with any additional constraints. This 
parameter estimation problem uses a least-squares type estimator with 
weighting function Σ− 1, which takes into account the uneven number of 
data points at low partial pressures of CO2 and low temperatures. A 
similar method and weighting function was used by the authors in 
previous isotherm model development (Hughes et al., 2021). The model 
is implemented in Pyomo (Hart et al., 2017), a python-based software 
developed for optimization, and is solved using the interior point opti
mization algorithm IPOPT (Wächter and Biegler, 2006). 

To evaluate the optimal combination of N and M, an information 
criterion was used to evaluate the tradeoff between the increasing model 
size and decreasing prediction error. Here, the Akaike Information Cri
terion (AIC) (Akaike, 1974) was used, shown in Eq. (21). 

AIC = 2p + ND⋅ln
(

obj
ND

)

(21)  

Here, p is the total number of parameters and ND is the total number of 
data points used for estimation. 

2.2.1. Model reformulation 
The chemistry model, as written above, contains several structural 

issues that present problems in the optimization solver and can result in 
poor convergence. First, the highly nonlinear solid–vapor equilibrium 
and reaction equilibrium equations can be difficult to converge. Second, 
the mole fraction variables for the chemisorption products are bounded 
between 0 and 1, and the value of these variables are expected to be at 
the lower bound when the CO2 loading is low, which can cause issues 
with convergence of NLP solvers, especially interior points solvers. To 
address this challenge, a log transformation of the model was performed; 
the resulting improvements to the model structure are two-fold. First, 
the highly nonlinear solid–vapor equilibrium and reaction equilibrium 
equations are replaced by linear equations. Second, mole fraction vari
ables in the transformed model are replaced by a new variable Zi, which 
does not need to satisfy the lower bound. This bound removal reduces 
the number of inequality constraints in the NLP problem, reducing its 
size, but most importantly removes the issue of the mole fraction vari
ables converging near the lower bound of 0. A step-by-step derivation of 
the log transformed equations can be found in the Appendix. 

2.3. Moving bed contactor model 

The moving bed technology was initially used in drying processes, 
but has garnered attention in many industries, most notably in the 
petrochemical industry (Shirzad et al., 2019). Some of the earliest 
mathematical models of the moving beds were developed for coal gas
ifiers (Denn et al., 1979; Yoon et al., 1979a, 1979b, 1978), and some of 
the authors of this paper previously presented a model of a moving bed 
process for CO2 capture using a functionalized sorbent (Kim et al., 
2016). There exist other works in the literature, experimental and 
computational, that have demonstrated the potential of the moving bed 
process for carbon capture directly, such as by using a sorbent, or 
indirectly, such as through chemical looping combustion (Kim et al., 
2016, 2013; Knaebel, 2009; Ku et al., 2014; Mondino et al., 2020, 2017; 
Morales-Ospino et al., 2021; Okumura et al., 2014; Ostace et al., 2018). 

The moving bed model developed in this work closely follows the 
model developed by Kim et al. (Kim et al., 2016) and was implemented 
in Aspen Custom Modeler, which contains a framework that simulta
neously solves the set of equations comprising mass, momentum, and 
energy conservation. The model is dynamic, nonisothermal, assumes 
spherical particles, and considers axial variation of the transport vari
ables. Similar to previous modeling studies of post-combustion capture 
(Hughes et al., 2021; Kim et al., 2016; Kotamreddy et al., 2019), the 
moving bed contactor model includes a shell-and-tube type embedded 
heat exchanger to supply (remove) heat to (from) the system. The 
moving bed model was developed with the following key assumptions: 
(1) the distribution of process variables is axial; (2) particles flow uni
formly throughout the bed with constant voidage and velocity; (3) there 
is no radial variation due to particle distribution; (4) there is no tem
perature variation within the particle; (5) particle attrition is negligible, 
and (6) the particles are 100% MOF (no binder). 

The model also considers external and internal mass transfer limi
tations and heat transfer between the gas phase, solid phase, and 
embedded heat exchanger. The model also assumes that CO2 is the only 
adsorbing species and the presence of other species in the flue gas do not 
affect the mass transfer of CO2, which is an assumption that has been 
used in previous modeling studies for dmpn–Mg2(dobpdc) (Hughes 
et al., 2021). This is a reasonable assumption based on available data for 
the uptake of select flue gas components in amine-appended 
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Mg2(dobpdc). For example, previous work has shown that adsorption of 
O2 and N2 in dmpn–Mg2(dobpdc) is negligible, and based on experi
mental breakthrough data, the material CO2 capacity changed very little 
when exposed to dry and humid 15% CO2 (balance N2) (Milner et al., 
2017). Additionally, as noted in the introduction, the same study 
showed that over the course of 1000 adsorption/desorption cycles with 
humid 15% CO2 in N2, the material achieves a stable cycling capacity. 
Additionally, a recent preliminary study of the stability of diamine- 
appended Mg2(dobpdc) variants to SO2—including 
dmpn–Mg2(dobpdc)—suggests that these materials may also achieve 
high, stable CO2 cycling capacities in the presence of this minor impurity 
(Parker et al., 2022). Finally, given the negligible uptake of O2 and N2 in 
the material, these gases are not expected to impact not have a signifi
cant effect on material regeneration or the energetics of CO2 adsorption 
(Hughes et al., 2021). 

2.3.1. Bulk Gas-Phase species balance 

εb
∂Cg,i

∂t
= εbDz

∂2Cg,i

∂z2 −
∂
(
vgCg,i

)

∂z
− (1 − εb)ρp

∂Qi

∂t
(22)  

In the gas-phase species balance presented in Eq. (22), εb represents the 
voidage in the bed, Cg,i represents the concentration of species i, Dz is the 
effective axial dispersion coefficient, vg is the superficial gas velocity, ρp 

is the particle density, and ∂Qi/∂t is the rate of mass transfer between the 
gas phase and solid particles. 

In this work, the Peclet number (Pe′) is used for calculating the 
effective axial dispersion coefficient (Eq. (23)). 

1
Pe′ =

Dz

vdp
=

20
RepScp

+
1
2

(23)  

Here, v is the particle velocity and Rep and Scp are the particle Reynolds 
and Schmidt numbers, respectively. 

2.3.2. Solid-phase species balance. 

(1 − εb)ρp
∂qi

∂t
= Js

∂qi

∂z
+(1 − εb)ρp

∂Qi

∂t
(24)  

The solid phase species balance is given by Eq. (24), where qi is the 
particle loading of species i, and Js is the solid flux (assumed to not vary 
with axial position in this work). 

2.3.3. Mass transfer 
The rate of the molar amount of CO2 (QCO2 ) transferred between the 

gas and solid phase is assumed to be the sum of the molar quantity of 
chemisorbed species (qCO2 ,chem) and phyisorbed species (qCO2 ,phys) and is 
given below: 

dQCO2

dt
=

dqCO2 ,chem

dt
+

dqCO2 ,phys

dt
(25)  

dqCO2 ,chem

dt
= kOC

[
q*

CO2 ,chem − qCO2 ,chem

]
(26)  

dqCO2 ,phys

dt
= kOP

[
q*

CO2 ,phys − qCO2 ,phys

]
(27)  

Here, kOC and kOP are the overall mass transfer coefficients for spherical 
MOF pellets that account for particle diffusion and adsorption kinetics 
and have been developed previously using experimental thermogravi
metric analysis and fixed bed breakthrough data (Hughes et al., 2021). 
Mass transfer coefficient equations and parameters can be found in the 
Appendix. q*

CO2 ,chem and q*
CO2 ,phys are the equilibrium loadings of the 

chemisorbed and physisorbed species, respectively, predicted by the 
chemistry model as discussed in Section 2.1.3. 

The rate of adsorption/desorption in an adsorbent particle is calcu

lated assuming a linear driving force: 

Ri =
6kf ,i

dp

(
Cg,i − Csurf ,i

)
= ρp

∂Qi

∂t
(28)  

where kf ,i is the external (gas film) mass transfer coefficient and Csurf ,i is 
the concentration of the gas at the particle surface. Eq. (28) determines 
Csurf ,i and accounts for any external mass transfer resistance across the 
gas film that surrounds the particle. 

2.3.4. Energy balances 

εbρgCp,g
∂Tg

∂t
= − ρgCp,gvg

∂Tg

∂z
− P

∂vg

∂z
− (1 − εb)aphgs

(
Tg − Ts

)
(29)  

The gas-phase energy balance is given in Eq. (29). Here, Tg represents 
the temperature of the gas phase, Cp,g is the heat capacity of the gas 
phase, ap is the specific particle surface area, and hgs is the heat transfer 
coefficient between the gas phase and the solid phase. 

(1 − εb)ρsCp,s
∂Ts

∂t
= Cp,sJs

∂Ts

∂z
+(1 − εb)aphgs

(
Tg − Ts

)
+

πDtNtube

Abed
ht(Tw − Ts)

+ΔHCO2 ρs
∂QCO2

∂t
(30)  

The solid-phase energy balance is given in Eq. (30). Here, Ntube is the 
number of heat exchanger tubes in the moving bed reactor, ht is the heat 
transfer coefficient between the solid phase and heat exchanger tube 
wall, and Tw is the temperature of the tube wall. The last term in the 
solid phase energy balance accounts for the adsorption heat where 
ΔHCO2 is the heat of adsorption. 

The energy balance across the tube wall gives the following equation: 

π(dt− 2wthx)Ntubehwgt(Tw − Ttube) − πdtNtubeht(Tw − Ts) = 0 (31)  

The energy balance for the tube side fluid is written in terms of enthalpy 
and is shown in Eq. (32). 

Ft
∂Ht

∂z
− π(dt − 2wthx)Ntubehwgt(Tw − Ttube) = 0 (32)  

Here, Ft is the flow of the tube side fluid, Ht is the enthalpy of the tube 
side fluid, and hwgt is the heat transfer coefficient between the tube fluid 
and the inner side of the tube. 

2.3.5. Heat transfer coefficients 
Heat transfer coefficients used are taken from Kim et al. (Kim et al., 

2016) and are based on the modified surface renewal theory. The cor
relations have origins for fluidized bed contactor models (Baskakov 
et al., 1973; Chen et al., 2005; Ruthven, 1984), but Kim et al. (Kim et al., 
2016) have applied them to a moving bed model. The complete list of 
the heat transfer coefficient equations can be found in the Appendix. 

2.3.6. Auxiliary equations 
The behavior of a falling particle in the moving bed can be estimated 

by analogy to a fluidized bed. For maintaining the solid particles in the 
moving bed flow regime, the internal gas velocity through the bed 
should be less than the minimum fluidization velocity, vmf , given by the 
equation below from Kunii and Levenspiel (Kunii and Levenspiel, 1991). 

1.75
ψε3

mf

(
dpumf ρg

μg

)2

+
150
(
1 − εmf

)

ψ2ε3
mf

(
dpumf ρg

μg

)

=
d3

pρg

(
ρs − ρg

)
g

μ2
g

(33)  

Therefore, the following constraint is satisfied at all positions in the bed. 

vg < vmf (34)  

The embedded heat exchanger modeled in this work considers a trian
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gular tube pitch arrangement and the configuration is calculated using 
Eqs. (35) and (36) (Kakac et al., 2012). 

Nt = (CTP)
πD2

b

4A1
(35)  

A1 = (CL)P2
t (36)  

Here, Db is the reactor diameter, Nt is the total number of tubes present 
in the reactor, A1 is the cross-sectional area of a repeating unit in the 
reactor that contains a single tube, and Pt is the tube pitch. CTP and CL 
are the tube count calculation constant and the tube layout constant, 
respectively; for one tube pass, CTP=0.93 and CL=0.87 for 30 and 60 
equilateral tri pitch. The same configuration has been used in previous 
modeling studies (Hughes et al., 2021; Kim et al., 2016; Kotamreddy 
et al., 2019). 

2.4. Plant-wide model of the moving bed TSA process 

A plant-wide model of the moving bed-based CO2 adsorption/ 
desorption process (see Fig. 1) model was developed in Aspen Custom 
Modeler v9. In the post combustion capture process, the MOF adsorbs 
CO2 at near ambient conditions in the adsorber. As highlighted in the 
thermal management study in our previous work, removal of heat 
generated upon CO2 adsorption is necessary to maximize the material 
adsorption performance (Hughes et al., 2021). Therefore, cooling water 
is used in the embedded heat exchanger of the moving adsorber to 
minimize increases in temperature. Following CO2 adsorption, the 
cleaned flue gas is vented to the atmosphere and the CO2-rich adsorbent 
particles are sent to the desorber. Before the particles enter the desorber, 
they are heated in the pre-heat exchanger, which uses sensible heat from 
the lean sorbent to heat the particles to regeneration conditions. This 
sensible heat recovery is an additional advantage of the moving bed 
process when compared to a fixed bed process. Steam is injected at the 
bottom of the desorber to aid in the removal of CO2 from the reactor as 
well as reduce the partial pressure of CO2 in the bed to aid in the driving 
force for mass transfer. Once the particles are regenerated in the 
desorber, they pass through the opposite side of the pre-heat exchanger 
to recover the heat and then are sent back to adsorber. 

A key assumption in the process is that a single desorber does not 
necessarily have to process the same quantity of solids that passes 
through a single adsorber. For reactors of the same size and configura
tion, the desorber is frequently able to process more solids than the 
adsorber, largely because it operates at a higher temperature that en
hances reaction rate constants and mass and heat transfer coefficients, 
thus resulting in a lower number of desorber beds needed for the system. 
Here, the solids flow to each contactor was set to achieve design con
ditions for CO2 capture (adsorber solids flow) and lean loading (desorber 
solids flow). In order to avoid transitioning into a fluidized bed regime, 
the maximum gas velocity in moving beds is limited; this factor, in 
combination with the maximum size limitation of a single moving bed 
reactor, often necessitates the use of more than one moving bed to 
process the flue gas from commercial scale power plants. To size the 
process for industrial capture, the moving adsorbers were assumed to 
operate in parallel with the number of required beds, which was 
calculated based on the total flue gas flow rate from the power gener
ation source and the design flow rate to a single bed. Similarly, the 
desorbers could operate in parallel, as needed, to regenerate the total 
amount of solids used in the adsorbers. The process was sized to capture 
CO2 from an industrial size coal-fired power plant with total flue gas 
flow and composition taken from the baseline study published by the 
National Energy Technology Laboratory (Fout et al., 2015). 

2.5. Cost model 

The cost model here closely follows that used in our prior work 

(Hughes et al., 2021) and is briefly summarized here. Equipment costs 
were determined using Aspen Process Economic Analyzer (APEA). The 
moving bed reactors were costed as shell and tube heat exchangers due 
to their similar configuration and were scaled to the required size using 
economy of scale. In addition to the costing model presented in Hughes 
et al. (Hughes et al., 2021), three components are included here, which 
are the capital cost of the distributors within the moving bed, the capital 
cost of the cross heat exchanger, and the power required to circulate the 
solids using bucket elevators. The equations for these components along 
with the costing constants are taken from Kotamreddy (Kotamreddy, 
2021) and are given in Eqs. (37) through (39). 

ACEX =
QCEX

UCEXΔTLM
(37)  

Costdist = 125π/4)(3.281⋅Db)
2 (38)  

PBE = 6.88e− 4⋅V̇BE⋅(3.28⋅DH + 10)⋅DSF (39)  

Here, the capital cost of the cross exchanger is determined by its 
required heat transfer area (ACEX). The cross exchanger is not rigorously 
simulated, and the heat transfer area is estimated using Eq. (37), which 
is then used to cost the exchanger using the same method as the moving 
bed reactors. The cost of a distributor for a single reactor is shown in Eq. 
(38) and calculated based on the diameter of the reactor. The power 
required by the bucket elevators (PBE) is calculated using Eq. (39). The 
power is given in kilowatts and is a function of the solid volumetric 
flowrate in m3/hr. The discharge height is in meters, and the drive safety 
factor (DSF), which varies depending on the class of the drive, is taken to 
be the upper bound of 2 in this work. Bare module capital costs are 
calculated by multiplying the purchased cost of the equipment by a 
factor to account for additional expenses due to labor, installation, 
overhead, and transportation (Turton et al., 2018). Additionally, the 
discount rate (or interest rate) is assumed to be 10% and the lifespan of 
the equipment is set to be 10 years. Operating costs of the process are 
calculated based on utility prices (see Table A1 in the Appendix) and 
usage, which is obtained from the moving bed process model simula
tions. The equivalent annual operating cost (EAOC) was then calculated 
using Eq. (40). 

EAOC= capitalcost
discountrate

(
1 − (1+discountrate)− numberof years

)+yearlyoperatingcosts

(40)  

The EAOC of a conventional post-combustion capture system using 
monoethanolamine (MEA) is used for comparison below and is taken 
from our prior work (Hughes et al., 2021), where it was calculated using 
results from a published study from the National Energy Technology 
Laboratory (Fout et al., 2015). 

2.6. Technoeconomic optimization 

The moving bed techno-economic optimization problem is given in 
Eq. (41). The goal of the optimization problem is to minimize the eco
nomic objective function, f(x) = EAOC, by optimizing the set of decision 
variables, denoted as x, which include design variables and operating 
conditions of the moving bed capture process. 

min

x
f (x) = EAOC

s.t.
h(x) = 0

g(x) ≤ 0

xL ≤ x ≤ xU

(41)  

The optimization problem is subject to equality and inequality con
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straints, denoted as h(x) and g(x), respectively. Here, the equality con
straints consist of the rigorous, first-principles model equations of the 
moving bed process. The optimization problem is solved with the use of 
the FOQUS toolset (Miller et al., 2017), which is able to connect 
modeling platforms to numerous mathematical tools, including deriva
tive free optimization algorithms. At each iteration of the derivative-free 
optimization algorithm, the FOQUS toolset will input the decision var
iables to the moving bed process model in Aspen Custom Modeler, run 
the model, and collect the results needed to calculate the economic 
objective function. This is a feasible path approach where the equality 
constraints of the optimization problem are satisfied at every iteration. 
In this work, the BOBYQA algorithm (Powell, 2009) is used to solve the 
optimization problem. 

Eqs. (42) through (46) show design constraints and inequality con
straints implemented in the moving bed optimization problem. The lean 
solids flow rate to the adsorber is calculated to achieve 90% capture of 
the CO2 in flue gas feed, as shown in Eq. (42). The desorber solids inlet 
temperature is calculated based on the temperature approach design 
constraint shown in Eq. (43). Additionally, no trim heaters or coolers are 
considered, and the adsorber solids inlet temperature is calculated by 
solving the energy balance around the cross exchanger. For both the 
adsorber and desorber, the maximum gas velocity is constrained to be 
less than or equal to 85% of the minimum fluidization velocity as shown 
in Eqs. (44) and (45) to keep the process in the moving-bed regime. As 
the velocity is calculated at every axial position, this constraint is 
ensured along the entire length of the reactor. Lastly, the purity of the 
regenerated CO2 stream leaving the top of the desorber was constrained 
to be greater than 95%.  

CO2 Capture Rate = 90%                                                                (42)  

Cross Exchanger Temperature Approach = 10 ◦C                               (43) 

vg,ads ≤ 0.85umf ,ads (44)  

vg,des ≤ 0.85umf ,des (45)   

CO2 Purity (mole basis) ≥ 95%                                                        (46) 

The cost to produce MOF particles on an industrial scale is still not 
well known, and therefore multiple optimization runs were carried out 
using different estimates of adsorbent cost and particle lifespan. In 
particular, MOF prices of 0.5, 5, 15, and $30/kg were used based on the 
literature review performed in our previous economic modeling studies 
(Hughes et al., 2021). In this review, $0.5/kg was identified as a price 
for a well-established physisorbent but may be too low for amine- 
appended MOFs, and, in the authors’ opinion, $5/kg is a more real
istic lower bound. For particle lifespan, values of 0.5 and 2 years were 
used. There is little data available to support either of these assumed 
time periods for lifespan range, but these values are similar to that used 
in a solid sorbent direct air capture report published by NETL (0.5 years) 
(Valentine et al., 2022). Typical particle deactivation in fixed bed sys
tems is due to irreversible reaction with contaminants in the flue gas, but 
the circulation of adsorbent solids in a moving bed can reduce the life
span of the particles even further. In all, eight optimization scenarios 
were considered with differing combinations of MOF price and lifespan 
(see Appendix Table A2). 

3. Results and discussion 

3.1. Chemistry model 

3.1.1. Reaction set selection 
We first discuss the results for the reaction set selection and 

parameter estimation problems. The optimal set of formation reactions 
(i.e., values of N and M) was determined by solving the parameter 
estimation subproblem for multiple reaction sets and evaluating which 

combination minimizes the AIC (refer to Eq. (21)). The reaction sets 
were generated by taking possible combinations of N and M and include 
the smallest possible model with the least number of parameters—in 
other words, a scenario where only one chemisorption product is formed 
in a single formation reaction. This latter case was considered for 
completeness, but, as noted above, analysis of CO2 uptake in 
dmpn–Mg2(dopbdc) using solid-state 13C NMR spectroscopy revealed 
that at low pressures, CO2 adsorbs to form both the mixed product (as 
the major species) and ammonium carbamates that are not interacting 
with carbamic acids (as the minor species), and thus scenarios where 
both N and M are non-zero are expected to afford better models of the 
isotherm data. 

The results of this analysis are shown in Fig. 2, and a complete list of 
the number of parameters, objective function value, and AIC for each 
model is given in Table A3. Notably, for all combinations of N and M, the 
AIC values are superior to that determined for the dual-site Sips isotherm 
model previously used by us to model the CO2 adsorption data for 
dmpn–Mg2(dobpdc) (Hughes et al., 2021). Here, the combination N=2 
and M=1 yielded the lowest AIC value of − 3418, which is nearly 42% 
lower than the value determined for the dual-site Sips isotherm model. 
As seen in Fig. 2, smaller models were associated with larger (less 
negative) AIC values, and they also yielded a less satisfactory fit to the 
experimental data; in contrast, larger models gave good fits to the 
experimental data, as shown by the objective function values in 
Table A3, but were associated with slightly larger AIC values due to the 
increased number of parameters. 

3.1.2. Parameter estimation and validation 
In Fig. 3, experimental CO2 adsorption isotherms for 

dmpn–Mg2(dobpdc) are plotted together with the optimal reaction 
model. It is clear that the chemistry model is able to accurately represent 
the experimental data at all temperatures and across the experimental 
pressure range, and when compared to the Sips isotherm model devel
oped previously (Hughes et al., 2021), the chemistry model performs 
better at high partial pressures. The objective function value (as calcu
lated by Eq. (20)) for the chemistry model is also nearly six times less 
than that for the Sips model (1.69 versus 9.48 [mol/kg]2, respectively; 
see Table A4 for a complete list of the estimated parameters for the 
optimal chemistry model). 

The chemistry model was also evaluated by investigating how well it 
predicts validation data that were not a part of the parameter estimation 
data set—here, adsorption isotherm collected at 80 and 90 ◦C. Fig. 4 
shows that the chemistry model is able to predict the validation data 
reasonably well. At 80 ◦C, the model predicts a less sharp adsorption step 
than the experimental data, similar to what is seen for the model at 75 ◦C 
in Fig. 3. An important feature of the data that a model should capture is 
the position of the step transition for a specific temperature. The model 
shows a step transition at 80 ◦C centered around ~4e+4 Pa which is 
consistent with the experimental data. The step transition predicted by 
the model isn’t quite as steep as the data shows, but the model still 
predicts this well. In contrast, at 90 ◦C both the model and the data do 
not exhibit a step-transition in the pressure range for which the data was 
collected. The model predicts a slightly higher uptake in the mid- 
pressure region than is observed experimentally, while this difference 
is more pronounced at higher pressures. The R2 value of the validation 
data prediction is 0.93, which is 1% lower than the R2 of the Sips 
Isotherm model (=0.94) for the same validation data set (Hughes et al., 
2021). A visual comparison of the chemistry model vs. the Sips Isotherm 
model for the estimation data and validation data is included in the 
Appendix (see Fig. A1). 

3.1.3. Heat of adsorption constraint 
The heat of CO2 adsorption, which is calculated using Eq. (19), was 

included as an inequality constraint in the model. Experimental data for 
the heat of adsorption is not available in the literature, and so the heat of 
adsorption versus loading reported by Milner et al. (Milner et al., 2017), 
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which was calculated using the Clausius–Clapeyron equation, was taken 
as a baseline. Using this, a constraint which ensures that the heat of 
adsorption predicted by the model is within ± 50% of the baseline data 
from Milner et al. (Milner et al., 2017) was included in the NLP 
parameter estimation problem. To avoid adding a large number of 

equations to the parameter estimation problem, the heat of adsorption 
was calculated at only a few representative CO2 loadings for each tem
perature, rather than every experimental isotherm data point. Fig. 5 
shows the heat of adsorption predicted by the chemistry model at 

Fig. 2. Integer sensitivity results for model selection showing the AIC values generated for varying combinations of N and M. As noted in Section 2.1.2, because the 
formation reactions proposed here are equivalent as defined, an analogous figure generated with values of N and M swapped would be equivalent to the plot shown 
here. The lowest AIC value (− 3418) was determined for N=2 and M=1 (red bar). Black line corresponds to Sips isotherm model from Hughes et al. (Hughes 
et al., 2021). 

Fig. 3. Parameter estimation results for N=2 and M=1 for linear pressure scale (left) and logarithmic pressure scale (right). Symbols represent experimental data and 
lines represent model prediction. 

Fig. 4. Optimal chemistry model (N=2, M=1) prediction of validation data. 
Symbols represent experimental data and lines represent model prediction. 

Fig. 5. Chemistry model heat of adsorption as a function of loading and tem
perature. Solid black lines represent the upper and lower bounds, and dashed 
lines represent model prediction at different temperatures. 
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temperatures ranging from 25 to 100 ◦C as well as the upper and lower 
bounds implemented as an inequality constraint based on the data from 
Milner et al. (Milner et al., 2017). The predicted heats of adsorption at 
40, 50, and 60 ◦C correspond closely with the baseline value over the 
entire range of loadings examined and are well within the upper and 
lower bounds. However, at 25 ◦C the model overestimates and un
derestimates the heat of adsorption at low and high loadings, respec
tively, and at a loading of 3.1 mol/kg, the model isosteric heat lies on the 
lower bound. Finally, the predicted heats of adsorption at 75 and 100 ◦C 
are lower than the baseline but still well above the lower bound. It 
should also be noted that the baseline taken from Milner et al. (Milner 
et al., 2017) was calculated by assuming the heat of adsorption does not 
vary with temperature, and therefore variations when examining a 
single temperature can be expected. Still, ensuring that the heat of 
adsorption is within a practical and expected range for the MOF system 
can help avoid overfitting to experimental data. 

3.1.4. Chemisorption reactant and product loadings 
Thus far we have focused on how well the model predicts the total 

CO2 loading of the system as well as the heat of adsorption. However, 
analyzing the contribution of individual species is valuable and can be 
important in identifying species or reaction pathways, but this is 
impossible for many of the heuristic isotherm models, as they do not 
model these species or go into this type of resolution. In this section, the 
profiles for the optimal chemistry-based model are presented and 
analyzed. 

Fig. 6 shows the loadings for the two main reactants involved in CO2 
chemisorption, namely the diamine and free CO2. At very low partial 
pressures of CO2, the loading of amine converges to the total amine 
loading (QAm) in pristine dmpn–Mg2(dobpdc) (3.82 mol/kg), which is 
expected given that no CO2 will be adsorbed as the partial pressure nears 
zero (Fig. 6a). At the lowest three temperatures considered (25, 60, and 
75 ◦C), the change in the amine loading exhibits a step-shaped profile 
with respect to partial pressure, with step positions at each temperature 
consistent with the step positions in the corresponding CO2 isotherm 
data. In contrast, for the highest two temperatures of 100 and 120 ◦C, the 
loading decreases only slightly in a linear fashion, consistent with a 
small amount of CO2 uptake in the pre-step region that is relevant at 
these temperatures and pressures. Fig. 6b shows that the free CO2 is 
present in only very small amounts across the entire temperature and 
pressure range considered. At 25 ◦C, this CO2 contributes almost negli
gibly to the total CO2 loading because it is consumed during chemi
sorption. At 60 and 70 ◦C, there is a slight increase in the loading of this 
free CO2 at low pressures before the respective adsorption step threshold 
pressures are achieved, and then the loading gradually levels off. At the 
highest two temperatures, the loading steadily increases, again consis
tent with a low uptake in the pre-step region before chemisorption. 

Fig. 7a shows the total amount of chemisorbed CO2 loaded in the 
material, as predicted by the optimal chemistry model for select tem
peratures and pressures ranging from 0 to 1 bar. At 25, 60, and 75 ◦C the 
model predicts a step-shaped increase in the loading of chemisorbed 
CO2; the loading at each temperature also plateaus at a value very close 

to the CO2 loading measured experimentally at the top of the step (i.e., 
before the onset of more gradual uptake) in the corresponding adsorp
tion isotherms. These data indicate that chemisorbed CO2 is the main 
contributor to the step-shaped CO2 adsorption profile for 
dmpn–Mg2(dobpdc) at these temperatures. Above 75 ◦C, the loading of 
chemisorbed CO2 is negligible over the entire pressure range, consistent 
with the absence of stepped CO2 adsorption at these those temperatures. 

Fig. 7b shows the percentage of chemisorbed CO2 that is incorpo
rated as product Bi, formed in the first chemisorption reaction defined 
above (in N=2 reaction steps). Interestingly, the majority of the chem
isorbed CO2 (≥80%) is present in this single product at 25, 60, and 75 ◦C 
and pressures above the experimental threshold pressure for CO2 
adsorption at each of these temperatures. In contrast, at these temper
atures the second chemisorbed species (Ci) dominates only at very low 
partial pressures before the onset of stepped adsorption. This distribu
tion of chemisorption products is consistent with prior solid-state 13C 
NMR spectroscopy data collected for CO2 loading in 
dmpn–Mg2(dobpdc), which found that a minor chemisorption product 
consisting of ammonium carbamates (here, product Ci) is formed at low 
pressures, whereas the mixed chemisorption product is the sole product 
at higher pressures (here, product Bi) (Forse et al., 2018). At tempera
tures of 100 and 120 ◦C, for which there is no stepped CO2 uptake up to 
1 bar, most of the chemisorbed CO2 is present as the second product 
species, Ci. 

3.1.5. Chain lengths 
The length of the main cooperatively adsorbed product chain was 

estimated as part of the parameter estimation problem solved in this 
work. McDonald et al. (McDonald et al., 2015) previously used the Hill 
equation (Weiss, 1997) to estimate the relative number of CO2 mole
cules involved in cooperative ammonium carbamate chain formation in 
mmen–M2(dobpdc) (mmen = N,N′-dimethylethylenediamine; M = Mg, 
Mn, Fe, Co, Ni, Zn). Table 1 compares the chain length estimated in this 
work for dmpn–Mg2(dobpdc) and the Hill coefficients calculated for 
mmen-M2(dobpdc). The value presented for this work is calculated by 
taking the sum of n1 and n2, and the Hill coefficients were calculated 
using only 25 ◦C isotherm data. Table 1 shows that the chain length 
estimated by this work are similar to those estimated previously for 
similar solid sorbents. 

3.1.6. Physisorbed loading 
Fig. 8a shows the predicted loading of physisorbed CO2 in 

dmpn–Mg2(dobpdc) over the experimental temperature and CO2 pres
sure range. The physical adsorption in this case is not associated with 
stepped adsorption, and so was modeled using a standard Langmuir 
isotherm equation. Fig. 8b shows the percentage of total adsorbed CO2 
that is physisorbed in the material at different temperatures and pres
sures. At 25, 60, and 75 ◦C, the fraction of physisorbed CO2 remains 
relatively low over the entire pressure range, given that the stepped CO2 
uptake at these temperatures accounts for the majority of adsorbed CO2 
(see Fig. 2). However, the amount of physisorbed CO2 increases at 
higher pressures, corresponding to uptake in the post-step region at 

Fig. 6. Loadings [mol/kg] of the species present in the optimal chemistry model (N=2, M=1). a) Unreacted diamine (Am). b) Adsorbed phase free CO2 (CO*
2).  
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these temperatures. At the two highest temperatures considered, for 
which there is no stepped adsorption observed experimentally, the 
majority of adsorbed CO2 is predicted to be physisorbed in the material 
with the remaining adsorbed CO2 existing as a chemisorbed product. 

3.2. Techno-economic optimization of the moving bed TSA process 

Fig. 9 shows estimated EAOC of the moving bed process for varying 
combinations of adsorbent price and lifespan. Unsurprisingly, the lowest 
EAOC ($128 million/year) is for Case 5, where the MOF price is the least 
expensive ($0.5/kg) and the lifespan is the longer of the two options, at 
two years. This EAOC is 49% less than that predicted for a conventional 
post-combustion capture system using monoethanolamine (Fout et al., 
2015). Two of the cases considered here have larger EAOCs than the 
MEA process, namely Cases 3 and 4, for which the lifetime of the MOF is 
assumed to be only six months, and the cost of the particles are the two 
highest values at $15 and $30/kg, respectively. Case 3 is only slightly 
more costly than the MEA process, while Case 4 is 44% more costly 
($362 million/year) and considered to be an extreme case and unlikely. 
Table 2 shows the results of the moving bed optimization problem for 
Case 1, including the design and operating variables that were consid
ered as decision variables, their optimized values, and their lower and 
upper bounds. Table 3 shows the minimized EAOC for Case 1 along with 
a breakdown of the significant contributing costs. A complete list of 
optimized design variables and costing breakdown is included in the 
Appendix (see Table A5 and A6). 

3.2.1. Moving bed profiles 
Fig. 10 shows the axial profiles for important process variables, 

including gas phase composition, solids loading, and temperature. Coal 

Fig. 7. Prediction of chemisorbed CO2 loading and chemisorbed product distribution. Left) Total chemisorbed CO2 loading. Dashed line represents the maximum 
achievable loading (QAm). Right) Fraction of chemisorbed CO2 contained in chemisorbed species B. 

Table 1 
Comparison of chain length estimations for varying MOFs and methods.  

MOF Value Method Source 

dmpn-Mg2(dobpdc) 11.0 Chemistry Model This work 
mmen-Mg2(dobpdc) 10.6 Hill Coefficient (McDonald et al., 2015) 
mmen-Mn2(dobpdc) 5.6 Hill Coefficient (McDonald et al., 2015) 
mmen-Fe2(dobpdc) 7.5 Hill Coefficient (McDonald et al., 2015) 
mmen-Co2(dobpdc) 11.5 Hill Coefficient (McDonald et al., 2015) 
mmen-Zn2(dobpdc) 6.0 Hill Coefficient (McDonald et al., 2015)  

Fig. 8. (a) Prediction of the loading of physisorbed CO2 in dmpn–Mg2(dobpdc) at a range of temperatures and pressures. (b) Fraction of the total CO2 loading which 
is physisorbed. 

Fig. 9. MB optimization results for varying MOF price and lifespan.  

Table 2 
MB optimization results, Case 1.  

Decision Variable Optimized 
Value 

Lower 
Bound 

Upper 
Bound 

Units 

Adsorber Height 3.63 1 20 [m] 
Adsorber Diameter 10 1 10 [m] 
Adsorber Tube Pitch 0.082 0.035 0.5 [m] 
Desorber Height 13.18 1 20 [m] 
Desorber Diameter 10 1 10 [m] 
Desorber Tube Pitch 0.114 0.035 0.5 [m] 
Lean sorbent loading 0.388 0.025 1 [mol/ 

kg] 
Adsorber Outlet 

Pressure 
1.01 1.01 2.0 [bar] 

Flue Gas Flowrate to a 
single bed 

2122 0 – [kmol/ 
hr] 

Direct Steam Flowrate 97.6 0 – [kmol/ 
hr]  

R. Hughes et al.                                                                                                                                                                                                                                 



Chemical Engineering Science 287 (2024) 119679

13

flue gas entering the bed has a CO2 concentration of 14.6% (v/v or mol 
%), and the quantity of CO2 steadily decreases as the gas travels upwards 
through the bed and is captured by the adsorbent (Fig. 10a). Similarly, 
the loading of CO2 in the adsorbent monotonically increases as the solid 
travels downward through the bed and captures CO2 (Fig. 10b). The 
temperature profiles across the moving bed for the gas phase, solid 
phase, heat transfer fluid (cooling water), and tube wall are shown 
together in Fig. 10c. As the cooling water flows downward through the 
embedded heat exchanger and removes heat from the bed (refer to 
Fig. 1), it increases in temperature. The adsorbent likewise flows from 
the top to the bottom of the bed, and the temperature of the solid in
creases near the top of the bed as fresh, lean sorbent begins to quickly 
adsorb CO2 and generate heat but remains somewhat constant in the 
remainder of the bed as the embedded exchanger and the cooling water 
are able to effectively remove the heat generated from adsorption. 
Additionally, since the dominating heat transfer occurs between the 
solid phase and the tube wall, the temperature of the gas phase quickly 
approaches that of the solid phase, and the two temperatures are nearly 
the same throughout the length of the bed. 

Similarly, Fig. 11 shows the same axial profiles for the moving bed 
desorber. Pure steam is fed through the bottom of the desorber to aid in 
mass transfer by reducing the partial pressure of CO2. However, the gas 
phase composition profile in Fig. 11a shows that the desorbed CO2 
quickly becomes the primary species in the gas phase. Note, the 
composition at the top of the desorber is 95% CO2, which was included 
as a constraint in the techno-economic optimization problem. Fig. 11b 
shows the CO2 loading profile of the adsorbent: the loading decreases as 
the solids flow downwards through the bed and CO2 is desorbed. As 
shown in Fig. 11c, the temperature of the adsorbent initially decreases at 
the top of the desorber as heat is consumed to regenerate the solid. Solid 
that is further along in the adsorber and has been regenerated then 
begins to increase in temperature as it remains in contact with the steam 
and embedded heat exchanger. It should be noted that water conden
sation from the gas phase is not currently considered in the model, but 
there is a possibility this could occur based on the operating conditions 
of the desorber. For the optimal conditions presented in Fig. 11, the 
relative humidity at all points in the bed is ≪ 1, so condensation is not 
expected but is something that should be monitored in any future 
designs. 

3.2.2. Capital cost uncertainty analysis 
A sensitivity study for the effect of capital cost uncertainty on overall 

process economics was performed. Here, the amortized capital cost for 
each case is multiplied by an assumed factor, ±50% is used in this study, 
to evaluate the effect on total process economics with results shown in 
Fig. 12. Separate trends are shown for each particle lifespan with the 
MOF price shown on the horizontal axis. Overall, the change is relatively 
small for each case with the largest change occurring for Case 4 which 
shows a change of 7% when this capital cost uncertainty is considered. 
The values presented in Fig. 12 are listed in Table A7. 

3.2.3. Comparison to fixed bed process 
As noted above, we previously presented a techno-economic analysis 

of a post-combustion capture process using dmpn–Mg2(dobpdc) as the 
adsorbent in fixed bed contactors (Hughes et al., 2021). In that work, we 
performed an analogous sensitivity study examining the impact of the 
price of the MOF on the EAOC of the fixed bed process. Table 4 compares 
the results for that study to the optimized moving bed TSA process in this 
work. The cost of capture, a common costing metric for CO2 capture 
systems, is also presented in Table 4, and is calculated by simply 
dividing the EAOC by the amount of CO2 captured by the process in an 
entire year. When the same adsorbent lifespan and price is considered, 
the moving bed process significantly outperforms the fixed bed process. 
Even when a lifespan of only 6 months is considered for the adsorbent in 
the moving bed process, the economics of that process are more favor
able than the fixed bed process, with equivalent MOF prices. It should be 

Table 3 
Costing breakdown [$million/year] for Case 1 optimized 
moving bed capture process.  

Amortized Capital 30.43 
Reactors 20.83 
Blowers 0.93 
Cross Exchanger 8.67 

Yearly Operating Costs 102.84 
Steam 93.81 
Electricity 2.96 
Cooling Water 0.28 
Sorbent 5.79 

EAOC 133.27  

Fig. 10. Adsorber Moving Bed Profile Plots. a) Gas phase CO2 mole fraction. b) 
Solids phase CO2 loading. c) Temperature profiles for gas phase, solid phase, 
heat transfer fluid, and tube wall. X axis is normalized axial distance along the 
reactor with 0 being the bottom of the moving bed and 1 being the top. 
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noted that the economics of the fixed bed process were investigated 
using single-variable sensitivity studies and what was deemed a prac
tical degree of heat recovery. However, if further process optimization 
were performed along with a detailed design of the heat recovery pro
cess, it is likely the economics would improve. 

The reduction in EAOC of the moving bed process is due in large part 
to the reduction in amortized reactor capital and steam operating costs. 
The moving bed process is capable of much more compact reactors since 
adsorption and desorption are carried out in separate units, unlike the 
fixed bed process in which all steps occur in the same unit, and designs 
can target the limiting mechanisms for each step. As a result, the 
amortized reactor capital cost of all the moving bed cases (see Table A6) 
is nearly 4x lower than the fixed bed TSA process (~$25 million/year vs. 

$99 million/year (Hughes et al., 2021)). The thermal energy re
quirements, directly related to the steam operating costs, for the fixed 
bed process from our previous work and the moving bed process cases 
are shown below in Table 5. The values are calculated considering only 
the thermal energy supplied by steam, and the fixed bed value in
corporates a practical heat recovery of 35% which lowers the value from 
the originally presented value of 3.23 (Hughes et al., 2021) to 2.62 MJ/ 
kg CO2. The energy requirements of the moving bed process vary slightly 
for each case due to the different operating conditions of each case found 
by the process optimization. The average value among all cases is 1.75 
MJ/kg which is a 33% reduction from the fixed bed process and is also 
17% lower than the value of 2.1 MJ/kg CO2 presented by Milner et. al. 

Fig. 11. Desorber Moving Bed Profile Plots. a) Gas phase CO2 mole fraction. b) 
Solids phase CO2 loading. c) Temperature profiles for gas phase, solid phase, 
heat transfer fluid, and tube wall. 

Fig. 12. Capital cost uncertainty analysis for optimal moving bed cases. Solid 
lines represent the nominal cases and dashed lines represent a +/- 50% change 
in amortized capital costs. 

Table 4 
EAOC and cost of capture values for varying MOF capture processes, lifespans, 
and prices.  

dmpn-Mg2(dobpdc) 
Capture Process 

MOF 
Lifespan 

MOF 
Price 

($/kg) 

EAOC 
($million/ 

year) 

Cost of 
Capture 

($/tonne) 

Fixed Bed TSA, Practical 
Heat Recovery ( 
Hughes et al., 2021) 

2 years 0 251 62.7 
15 341.6 85.4 
30 427 106.7 

Moving Bed TSA 2 years 0.5 128.4 32.1 
5 143.5 35.9 
15 168.1 42.0 
30 200.3 50.1 

Moving Bed TSA 6 months 0.5 133.3 33.3 
5 175.8 43.9 
15 261.5 65.3 
30 362 90.5  

Table 5 
Thermal energy requirements for fixed bed capture processes and the moving 
bed processes evaluated in this work.  

dmpn-Mg2(dobpdc) Capture Process Thermal Energy Requirement 
[MJ/kg CO2] 

Fixed Bed TSA, Practical Heat Recovery ( 
Hughes et al., 2021) 

2.62 

Moving Bed TSA  
Case 1 1.72 
Case 2 1.75 
Case 3 1.76 
Case 4 1.79 
Case 5 1.71 
Case 6 1.73 
Case 7 1.76 
Case 8 1.77  
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(Milner et al., 2017) which assumes a theoretical temperature swing and 
working capacity. When compared to the theoretical values assumed by 
Milner et. al., the moving bed process is nearly able to achieve the same 
working capacity (2.13 mol/kg for the moving bed vs. the theoretical 
2.42 mol/kg) and requires a smaller amount of sensible heat (a 10 ◦C 
swing vs. a 60 ◦C theoretical swing) due to the large amount of heat 
recycled by the cross-exchanger. The high working capacity achieved by 
the moving bed process and large amounts of heat recycled by the cross- 
exchanger are responsible for the reduction in energy requirements. 

4. Conclusions 

A chemistry-based model is developed to describe the adsorption 
equilibrium of an amine-appended MOF, specifically dmpn- 
Mg2(dobpdc), for the first time. Selection of the optimal cooperative 
adsorption reactions proposed in this work is performed based on 
exhaustive enumeration of combinations of integer variables for mini
mizing the AIC. The optimal reaction set is found to be: N=2 and M=1 
which gives an AIC value of − 3418 and is a reduction of nearly 42% 
when compared to the previously developed Sips isotherm model. The 
optimal reaction combination also gives an excellent fit to the experi
mental isotherm data, showing a nearly 6x reduction of the weighted 
least squares objective function used in this work when compared to the 
Sips isotherm model. The chemistry model also performs well when 
testing against a validation data set and gives chain length values that 
compare well to those estimated for other amine-appended MOFs. 
Overall, this model gives better prediction of the experimental data 
while giving an insightful look into the compositions of cooperatively 
adsorbed species and how they change with varying temperatures and 
pressures which has not been done for previous amine-appended 
isotherm models. In future, this model can be enhanced to provide a 
much better framework for incorporating interactions with other spe
cies, mainly water. Additionally, the uptake of water and how it affects 
CO2 loading is an important area of future work for this model. The 
model can also be expanded to include enthalpy models which will give 
a better prediction of the heat of adsorption if experimental data be
comes available. Evaluation of new materials by identifying limiting 
pathways can also be a focus of future work. The framework of this 
chemistry-based model also makes it generic enough to be applied to 
other functionalized sorbents which can be a focus of future work. 

Techno-economic optimization, undertaken by developing a detailed 
plant-wide model of the MB-based adsorption/desorption process and a 
cost model, results in nearly 43% lower EAOC than the MEA baseline 
process when a MOF price of 5 $/kg and lifespan of 2 years is considered. 
With considerable advances being made in the manufacturing of the 
functionalized MOF sorbents and with large scale utilization of these 
materials, MOF particle lifespan is expected to go up and cost is expected 
to go down. If we consider the cost of MOF to be $15/kg and life span of 
2 years (i.e., Case 7), which is the most likely scenario in the near future 
in the authors’ view, EAOC offered by the diamine-appended MOF is 
about 33% lower than MEA. The moving bed process also shows a sig
nificant cost reduction for all cases investigated when compared to the 
fixed bed dmpn-Mg2(dobpdc) TSA process which can be attributed to a 
reduction in capital cost (-75%) and energy requirement (–33%). 

The studies completed in this work provide insight into the possible 
improvement in process economics that a MB process can provide when 
compared to a traditional solvent process and even other type of con
tactors for sorbent-based processes. Future work should focus on better 
understanding some of the areas of uncertainty that were investigated in 
this work, specifically the price of the MOF sorbent and lifespan of the 
particle as they have been shown to have a significant effect on the 

process economics. Additionally, the increased attrition of the MB pro
cess due to the circulation of the particles can decrease particle lifespan 
below the range which is even considered here. Investigation of the MOF 
particle attrition in a MB process would be needed before any real-world 
application. The adsorption of water and how it affects the energetics of 
the process and the costs to maintain the water balance should be 
investigated in future works. The gas velocity constraint required to 
keep the process in the MB regime results in a large number of adsorbers 
needed to process the flue gas due to the low volumetric flow rate to a 
single bed. An area of future would be investigating hybrid systems 
which use a MB contactor for regeneration and another type of solid 
contactor for adsorption, such as a fluidized bed. 
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Appendix 

A1. Methods: Chemistry Model Reformulation 

First, the natural log was applied to the solid–vapor equilibrium equation. 

ln
(
yCO2 ϕ̂CO2 P

)
= ln

(
γCO2

)
+ ln

(
zCO*

2

)
+ ln

(
f 0
CO2

)
(A1)  

Substituting ϕ̂CO2 = 1 and f0
CO2

= kH,CO2 , Eq. (A1) becomes: 

ln
(
yCO2 P

)
= ln

(
γCO2

)
+ ln

(
zCO*

2

)
+ ln

(
kH,CO2

)
(A2)  

Next, the natural log is applied to the reaction equilibrium equation. 

ln
(
Keq
)
=
∑J

i=1
viln(zi) (A3)  

This transformation results in new linear equations, but additional steps must be taken to avoid calculating the natural log in an equation-oriented 
framework. The LHS of the transformed SVE equation can be handled by a preprocessing of the experimental data and is simply a fixed input into 
the parameter estimation problem. The correlations for the activity coefficient of CO2, Henry’s constant, and the reaction equilibrium constant are 
already written for the natural log of each term and can simply be substituted into the equations. To address the natural log of mole fractions, a new 
transformed mole fraction variable, Z, is introduced in Eq. (A4). Bound transformation for this new variable is also performed and shown in Eq. (A5). 

zi = exp(Zi) (A4)  

Zi ∈ [ − ∞, 0] (A5)  

Substituting this new variable into Eqs. (A2) and (A3) yields the linear equations shown below. 
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2
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(A6)  

ln
(
Keq
)
=
∑J

i=1
viZi (A7)  

Substitution can also be performed for the remaining chemistry model equations in which mole fractions appear and are shown below for clarity. 

ln
(
γCO2
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= exp(ZAm)

[
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(A8)  

exp(ZAm)+ exp
(

ZCO*
2

)
+
∑N

j=1
exp
(
ZBj

)
+
∑M

j=1
exp
(
ZCj

)
= 1 (A9)  

q*
i = Q*exp(Zi) (A10)  

A2. Methods: Mass Transfer Coefficients 

Equations to calculate the overall mass transfer coefficients for the chemisorption and physisorption species are shown in Eqs. (A11-A15). 
Equations and estimated parameters are taken from Hughes et. al. (Hughes et al., 2021). The equations consider a sum of resistances for particle 
diffusion and reaction kinetics to predict the overall mass transfer coefficient. 

1
kOC

=
r2

p

15εpDeff
+

1
kchem

(A11)  

1
kOP

=
r2

p

15εpDeff
+

1
kphys

(A12)  

Deff = C1(Ts)
0.5 (A13)  

kchem = kchem,0exp
[
− Echem

RT0

(
T0

T
− 1
)]

(A14) 
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kphys = kphys,0exp
[
− Ephys

RT0

(
T0

T
− 1
)]

(A15)  

A3. Methods: Heat Transfer Coefficients 

The gas-to-solid hgs, wall-to-gas hwg, wall-to-solid hws, and steam-wall ht heat transfer coefficients are described in the equations below: 

Nu =
hwgdp

kg
= 0.009Ar1/2Pr1/3 (A16)  

Nup =
hgsdp

kg
= 2.0 + 1.1Pr1/3Rep

3/5 (A17)  

kpa = (3.58 − 2.5e)kg
(
ks
/

kg
)0.46(1− e) (A18)  

hws = 2
(

kpaρsCp,s
1 − e

πτ

)1/2

(A19)  

ht = fb hws +(1 − fb ) hwg (A20) 

where kg and ks denote the gas and sorbent thermal conductivities, respectively, Ar is the Archimedes number, Pr is the Prandtl number, kpa is the 
bed’s thermal conductivity at minimum fluidization velocity, fb is the fraction of time that the heat exchanger surface contacts the solids, and τ is the 
average residence time of the solids contacting the heat exchanger surface. The parameters fb and τ are given by the following relations: 

fb = 0.33

[

v2
mf

(
(fn − ah)

2

9.8dp

)0.14 ]

(A21)  

fn =
vg

vmf
(A22)  

τ = 0.44

[(
9.8dp

v2
mf (fn − ah)

2

)0.14(
dp

do

)0.225
]

(A23)  

A4. Methods: Cost Model  

Table A1 
Utility Prices used in the Costing Model.  

Utility Price 

Steam 29.29 $/(1000 kg) 
Electricity 0.06 $/kWh 
Cooling Water 0.354 $/GJ  

A5. Methods: Techno-Economic Optimization  

Table A2 
MOF price and particle lifespan for moving bed optimization cases.   

MOF Price [$/kg] Particle Lifespan [years] 

Case 1 0.5 0.5 
Case 2 5 0.5 
Case 3 15 0.5 
Case 4 30 0.5 
Case 5 0.5 2 
Case 6 5 2 
Case 7 15 2 
Case 8 30 2  
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A6. Results: Reaction Set Selection  

Table A3 
Reaction Set Selection Results.  

Model [N,M] # of Parameters Objective Function AIC 

[1,0] 12 3.170 − 3059.65 
[1,1] 15 2.773 − 3132.53 
[2,0] 15 3.170 − 3053.65 
[2,1] 18 1.692 ¡3417.98 
[3,0] 18 2.547 − 3176.63 
[2,2] 21 1.692 − 3411.98 
[3,1] 21 1.692 − 3411.98 
[4,0] 21 2.547 − 3170.63 
[3,2] 24 1.692 − 3405.98 
[4,1] 24 1.692 − 3405.98 
[5,0] 24 2.547 − 3164.63  

A7. Results: Parameter Estimation and Validation  

Table A4 
Estimated chemistry model parameters for N = 2 and M = 1.  

Parameter Estimated Value Units Lower Bound Upper Bound 

k0,N1 67.62 – − 1000 10,000 
k0,N2 214.95 – − 1000 10,000 
k0,M1 23.56 – − 1000 10,000 
kphys,0 3.31E-06 Pa− 1 − 50 100 
k1,N1 160.07 K − 10000 10,000 
k1,N2 69.65 K − 10000 10,000 
k1,M1 92.14 K − 10000 10,000 
Ephys 16.85 kJ/mol 5 500 
n1 2.85 – 1 15 
n2 8.19 – 1 15 
m1 1 – 1 15 
Nphys 2.59 mol/kg 0 1000 
aH 206.16 Pa – – 
bH − 114.18 K – – 
τA,0 − 385.03 – – – 
τB,0 − 204.70 – – – 
τA,1 254.09 K – – 
τB,0 132.67 K – – 
Objective Function 1.692      
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Fig. A1. Comparison of Chemistry model and Sips Isotherm model (Hughes et al., 2021). a) Estimation data with log scale horizontal axis. b) Estimation data with 
linear scale horizontal axis. c) Validation data. Chemistry model prediction is shown with the solid-colored lines, Sips isotherm model is shown with dashed-colored 
lines, and experimental data is shown with colored symbols. Temperature sets are shown with the same color. 

A8. Results: Moving Bed TSA Techno-Economic Optimization  

Table A5 
Optimization results for each particle cost uncertainty case.  

Decision Variable Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Lower Bound Upper Bound Units 

Adsorber Height 3.63 2.41 2.51 2.05 4.01 2.69 2.38 2.14 1 20 [m] 
Adsorber Diameter 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1 10 [m] 
Adsorber Tube Pitch 0.082 0.060 0.065 0.052 0.086 0.066 0.059 0.054 0.035 0.5 [m] 
Desorber Height 13.2 13.0 12.3 11.7 14.2 13.1 11.3 11.6 1 20 [m] 
Desorber Diameter 10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 1 10 [m] 
Desorber Tube Pitch 0.114 0.090 0.084 0.061 0.122 0.091 0.073 0.065 0.035 0.5 [m] 
Lean sorbent loading 0.388 0.485 0.513 0.553 0.369 0.433 0.540 0.518 0.025 1 [mol/kg] 
Adsorber Outlet Pressure 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 1.01 2 [bar] 
Flue Gas Flowrate 2123 1952 1984 1827 2150 2015 1935 1868 0 – [kmol/hr] 
Direct Steam Flowrate 97.6 113 110 107 97.5 109 133 106 0 – [kmol/hr]   
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Table A6 
Cost breakdown [$million/year] for each moving bed optimization case.   

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 

Amortized Capital 30.4 35.5 34.6 42.6 29.8 33.9 37.6 40.5 
Reactors 20.8 24.6 23.5 29.9 20.5 23.5 26.2 28.4 
Blowers 0.931 0.931 0.931 0.931 0.931 0.931 0.931 0.931 
Cross Exchanger 8.7 9.9 10.2 11.7 8.4 9.5 10.5 11.1 

Yearly Operating Costs 102.8 140.4 226.9 319.4 98.6 109.5 130.5 159.8 
Steam 93.8 95.5 96.1 97.8 93.5 94.5 96.1 96.7 
Electricity 2.97 2.48 2.53 2.38 3.12 2.59 2.44 2.41 
Cooling Water 0.275 0.275 0.278 0.283 0.276 0.273 0.276 0.281 
Sorbent 5.79 42.2 128.0 219.0 1.70 12.1 31.7 60.4 

EAOC 133.3 175.8 261.5 362.0 128.4 143.5 168.1 200.3   

Table A7 
EAOC [$million/year] for capital cost uncertainty cases.   

+50% Capital Costs Nominal − 50% Capital Costs 

Case 1 142.4 133.3 124.2 
Case 2 186.7 175.8 164.9 
Case 3 271.9 261.5 251.2 
Case 4 375.4 362.0 348.5 
Case 5 137.4 128.4 119.5 
Case 6 153.8 143.5 133.1 
Case 7 179.8 168.1 156.5 
Case 8 213.0 200.3 187.5  
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