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A theoretical analysis of chemical bonding, vibronic
coupling, and magnetic anisotropy in linear iron(II)
complexes with single-molecule magnet behavior†

Mihail Atanasov,*ab Joseph M. Zadrozny,c Jeffrey R. Longc and Frank Neese*a

The electronic structure and magnetic anisotropy of six complexes of high-spin FeII with linear FeX2 (X ¼ C,

N, O) cores, Fe[N(SiMe3)(Dipp)]2 (1), Fe[C(SiMe3)3]2 (2), Fe[N(H)Ar0]2 (3), Fe[N(H)Ar*]2 (4), Fe[O(Ar0)]2 (5),

and Fe[N(t-Bu)2]2 (7) [Dipp ¼ C6H3-2,6-Pr
i
2; Ar0 ¼ C6H3-2,6-(C6H3-2,6-Pr

i
2)2; Ar* ¼ C6H3-2,6-(C6H2-2,4,6-

Pri2)2; Ar# ¼ C6H3-2,6-(C6H2-2,4,6-Me3)2], and one bent (FeN2) complex, Fe[N(H)Ar#]2 (6), have been

studied theoretically using complete active space self-consistent field (CASSCF) wavefunctions in

conjunction with N-Electron Valence Perturbation Theory (NEVPT2) and quasidegenerate perturbation

theory (QDPT) for the treatment of magnetic field and spin-dependent relativistic effects. Mössbauer

studies on compound 2 indicate an internal magnetic field of unprecedented magnitude (151.7 T) at

the FeII nucleus. This has been interpreted as arising from first order angular momentum of the 5D

ground state of FeII center (J. Am. Chem. Soc. 2004, 126, 10206). Using geometries from X-ray structural

data, ligand field parameters for the Fe-ligand bonds were extracted using a 1 : 1 mapping of the

angular overlap model onto multireference wavefunctions. The results demonstrate that the metal–

ligand bonding in these complexes is characterized by: (i) strong 3dz2–4s mixing (in all complexes), (ii) p-

bonding anisotropy involving the strong p-donor amide ligands (in 1, 3–4, 6, and 7) and (iii) orbital

mixings of the s–p type for Fe–O bonds (misdirected valence in 5). The interplay of all three effects

leads to an appreciable symmetry lowering and splitting of the 5D (3dxy, 3dx2�y2) ground state. The

strengths of the effects increase in the order 1 < 5 < 7 � 6. However, the differential bonding effects are

largely overruled by first-order spin–orbit coupling, which leads to a nearly non-reduced orbital

contribution of L ¼ 1 to yield a net magnetic moment of about 6 mB. This unique spin–orbital driven

magnetism is significantly modulated by geometric distortion effects: static distortions for the bent

complex 6 and dynamic vibronic coupling effects of the Renner–Teller type of increasing strength for

the series 1–5. Ab initio calculations based on geometries from X-ray data for 1 and 2 reproduce the

magnetic data exceptionally well. Magnetic sublevels and wavefunctions were calculated employing a

dynamic Renner–Teller vibronic coupling model with vibronic coupling parameters adjusted from the ab

initio results on a small Fe(CH3)2 truncated model complex. The model reproduces the observed

reduction of the orbital moments and quantitatively reproduces the magnetic susceptibility data of 3–5

after introduction of the vibronic coupling strength (f) as a single adjustable parameter. Its value varies

in a narrow range (f ¼ 0.142 � 0.015) across the series. The results indicate that the systems are near

the borderline of the transition from a static to a dynamic Renner–Teller effect. Renner–Teller vibronic

activity is used to explain the large reduction of the spin-reversal barrier Ueff along the series from 1 to

5. Based upon the theoretical analysis, guidelines for generating new single-molecule magnets with

enhanced magnetic anisotropies and longer relaxation times are formulated.
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1 Introduction

Considerable efforts have been dedicated toward the synthesis
and characterization of single-molecule magnets—para-
magnetic molecules displaying magnetic bistability. The moti-
vation for these studies lies in the interest in the potential
future applications for such compounds in high-density infor-
mation storage,1 quantum computing,2–4 and magnetic refrig-
eration.5 Single-molecule magnets are open shell spin systems,
Chem. Sci., 2013, 4, 139–156 | 139
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which under an applied external direct current (dc) magnetic
eld are magnetized and remain so upon removal of the eld.
The phenomenon occurs at temperatures below a critical value,
the blocking temperature TB. This property is intrinsically
related to the existence of an energy barrier U ¼ S2|D| for the
reversal of the magnetization (D is the axial zero-eld splitting
parameter for the ground state of total spin S, frequently
referred to as the magnetic anisotropy) by spin–phonon
coupling and/or thermally assisted quantum tunneling, which
usually renders the effective barrier Ueff smaller than U. The
targeted large and negative quantity D implies orbital contri-
butions to the spin from spin–orbit coupling in combination
with an axial threefold or fourfoldmolecular symmetry (uniaxial
anisotropy). Since the discovery of the effect in the celebrated
Mn12 single-molecule magnet (TB z 3.5 K, Ueff up to 72 K),6–8

many such systems belonging to the same family or other ones –
(e.g., Mn6,9 Fe8,10 Mn4,11 and Fe4 (ref. 12–14) have been found to
exhibit a similar type of magnetic behavior. It was pointed out
that, with the number of spin centers being the same, since rDr
f 1/S2, a high value of S is not a necessary condition for large
Ueff values to occur.15 It is important to note that this mathe-
matical relationship is not a feature that arises from cluster spin
coupling,16 but instead follows from the fundamental theory of
the zero-eld splitting interaction.17 This prediction is sup-
ported by experiment, as comparison between D values of Mnn

complexes with different nuclearity (n) and variable spin-
ground states (S) shows: n ¼ 1, D ¼ �2.29 cm�1, S ¼ 2,16 n ¼ 6,
D¼�1.22 cm�1, S¼ 4 (ref. 18), n¼ 12, D¼�0.5 cm�1, S¼ 10,6–8

n¼ 6, D¼�0.43 cm�1, S¼ 12,9 and n¼ 18, D¼�0.13 cm�1, S¼
13.19 However, in favor of systems with a large total spin, one
can quote that the relaxation time (s) for the thermally activated
process is greatly enhanced by large values of S, as was pointed
out on theoretical grounds (s f (S6/U3)exp(U/kBT)).20,7 It has
been also shown (ref. 7, Chapter 6) that increasing total spin S
leads to suppression of the quantum tunneling of the magne-
tization as quantied by the ground state (Landau–Zener)
splitting DE(MS ¼ �S) which vanishes exponentially with DE
(MS ¼ �S) f [Hx/(4rDrS)]

2S, Hx – the intrinsic transversal
magnetic eld.

In MnIII- and FeIII-based single-molecule magnets, the
magnetic anisotropy arises from favorable alignment of local D-
tensors, which originate from mixing, via spin–orbit coupling,
of the non-degenerate ground states of MnIII (d4, subject to
static Jahn–Teller distortions) or of FeIII (d5) with excited elec-
tronic states bearing rst-order orbital angular momenta. The
directed, favorable alignment of local anisotropy axes in a
multinuclear transition metal complex is obviously a grand
synthetic challenge that cannot be considered as being solved.
Hence, another strategy to achieve more negative D-values is to
focus on complexes with trigonal geometries and orbitally
degenerate ground states 2S+1E. Hybrid ligand scaffolds of FeII

with trianionic tris(pyrrolyl-a-methyl) amines (tpa),21 for
example, enforce a three-fold coordination geometry around the
FeII centers, which can result in unusually large values, such as
D ¼ �40 cm�1 for [K(DME)4][Fe(tpa

Mes)].22 The observation of
slow relaxation of the magnetization in this complex with the
presence of a small dc eld, with an effective relaxation barrier
140 | Chem. Sci., 2013, 4, 139–156
of Ueff ¼ 42 cm�1, provided the rst example of a mononuclear
transition metal complex with single-molecule magnet-like
behavior.22 Expanding on this discovery, a series of four struc-
turally and magnetically well-documented compounds:
[Fe(tpaR)]� (R ¼ tert-butyl, mesityl, phenyl and 2,6-diuor-
ophenyl) were reported to display similar properties tuned by a
variation of the substituents R.23 In the trigonally elongated site
imposed by the tpaR ligand, the (dxz,yz)

1 electron conguration24

yields a contribution ofML¼�1 to the net spinmoment ofMS¼
�2, resulting in a bistable MJ ¼ �3 (5/2 mB) ground state.25 The
effect of the orbital moment on the magnetic anisotropy would
be enhanced in hypothetical trigonally compressed tetrahedral
FeX4 (5E(dx2�y2,xy)

1)26 or linear FeX2 (5D(dx2�y2,xy)
1) complexes

possessing a twice larger orbital contribution to the magnetic
moment of ML ¼ �2.27 In one complex of the latter type, Fe
[C(SiMe3)3]2 (2), very large orbital momentum contributions,
equivalent to adding two full S¼ 1/2 spins to the spin-only value
of S ¼ 2, were demonstrated by an unusually large internal
hyperne eld (Hint ¼ 151.6 T), as manifested in the Mössbauer
spectra and also by dc magnetization measurement.28 A similar
but less pronounced hyperne eld (Hint ¼ 105 T) was later
found in the compound Fe[N(t-Bu)2]2 (7), with the lower relative
magnitude of Hint being attributed to the lower effective
symmetry imposed by the non-axially symmetric ligands.29

Additionally, experimental observation of quenched orbital
angular momentum induced by a bent L–Fe–L angle was shown
for the two-coordinate complex Fe[N(H)Ar#]2 (Ar# ¼ C6H3-2,6-
(C6H2-2,4,6-Me3)2) (6), in contrast to the linear Fe[N(H)Ar*]2
analogue (Ar* ¼ C6H3-2,6-(C6H2-2,4,6-Pr

i
2)2) (4), which showed

the large magnetic moment and internal hyperne eld
suggestive of orbital angular momentum.30

Transition metal complexes with open d-shells have tradi-
tionally been treated by ligand eld theory (LFT). As a para-
metrical model, LFT can only be used for the sake of
interpretation, rather than for the prediction of properties.
Density functional theory (DFT), being broadly used in chem-
istry for the prediction of ground state geometries and proper-
ties of electronic states in molecules, is well suited for systems
with orbitally non-degenerate ground states (mono-determi-
nantal wavefunctions). In contrast, the applicability of the
theory is severely limited in cases where a superposition of
charge distributions described by several rather than one Slater
determinants (multi-determinantal wavefunctions) is manda-
tory for a realistic description. Systems with orbital degeneracy,
which are the subject of the present study, clearly fall into this
latter category. In this context, we mention, but will not further
discuss, pragmatic approaches that allow one to deduce ligand
eld parameters from DFT calculations.31–34 Magnetic systems
of the type considered here are still too large to be treated with
the available implementations of variational conguration
interaction (CI) type approaches that cover both static and
dynamic correlation effects. Even the application of complete
active space self-consistent eld method (CASSCF)35 in
conjunction with second-order perturbation corrections to the
CASSCF energies (such as the complete active space perturba-
tion theory, CASPT2,36–40 or the N-electron-Valence-Perturbation
Theory NEVPT2 (ref. 40–44)) are very challenging to apply to
This journal is ª The Royal Society of Chemistry 2013
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systems with more than one hundred atoms in conjunction
with at least triple-zeta basis sets. The potential of using such
approaches to calculate spin Hamiltonian parameters of
mono-15,45–47 and bi-48–50 and even trinuclear transition metal
complexes51 was recently demonstrated. Additionally, a general
rst-principles method to calculate the spin-dependent part of
the energies of ground and excited multiplets for larger poly-
nuclear complexes was proposed.52

In this study, we apply the recent implementation of the
CASSCF and NEVPT2 methods in the ORCA53,54 program
package to perform large-scale correlated calculations on the
electronic structure and magnetic properties of a series of
complexes of high-spin FeII with linear FeX2 (1–5, 7) and bent
FeN2 (6) cores (see ref. 29 and 55 for depictions of the structures
of these molecules). This work was performed in parallel with
an ongoing experimental study of their magnetic properties
reported in the preceding companion paper.55 We use the
protocol developed and applied for the interpretation, analysis,
and prediction of the magnetic properties of the closely related
series of [Fe(tpaR)]� compounds published recently.46 The
energies of the lowest spin-levels, which govern the magnetic
behavior of the complexes, and their ligand eld analysis
provide important insights into the respective inuences of
chemical bonding and static and dynamic vibronic coupling on
the observed spin-reversal barriers.

This paper is divided into two parts. In the rst part, the basic
theory and the computational scheme are outlined. These
include the ligand eld background for analyzing the ab initio
results and the static and dynamic vibronic coupling model
employed for the interpretation of the magnetic data. In the
second part, the results involving analysis of the chemical
bonding, magnetic properties, and the ligand eld are described.
2 Computations and theory
2.1 Computations

The electronic energy levels for the complexes were computed
using geometries from the crystal structures of 1 and 3,55 2,56 4
and 6,30 5,57 and 7.29 The computational protocol for the calcu-
lation of CASSCF/NEVPT2 wavefunctions/energies was previ-
ously described in ref. 55. The calculation of the magnetic
properties—isothermal magnetizations and magnetic suscep-
tibilities—using these wavefunctions and energies were
Fig. 1 Fe(CH3)2, Fe(NH2)2, and Fe(OH)2 DFT-optimized model complexes with
D3d, D2h, and C2h geometries employed in the analysis of the FeII–ligand chemical
bond and the pseudo Jahn–Teller activity of the d6 configuration of FeII; Orange,
gray, blue, red and cyan spheres represent Fe, C, N, O and H atoms, respectively.

This journal is ª The Royal Society of Chemistry 2013
detailed in a recent publication.46 In order to study vibronic
coupling effects, starting with complex 2, possessing trigonal
symmetry and the pseudo Jahn–Teller effect in complexes 1 and
3–7, we employed the truncated model complexes Fe(CH3)2,
Fe(NH2)2 and Fe(OH)2 (see Fig. 1).
2.2 Ligand eld considerations

The 5E ground state of FeC2 (complex 2, accounting for the
trigonal symmetry due to the next-nearest neighbors) is
described by a total spin S ¼ 2 arising from two singly occupied
orbitals e(dx2�y2) or e(dxy) in addition to the half-lled d5 shell.
These states give rise to ML ¼ �2 eigenfunctions of the angular
momentum operator L̂z (eqn (1)).��5E; � 2

� ¼ �
1=

ffiffiffi
2

p ����5E; dx2�y2

�� i
��5E; dxy

��
(1)

Note that the states r5E,2i and r5E,�2i cannot mix under the
action of L̂x and L̂y since ML changes by �1 unit of angular
momentum through L̂x and L̂y. Mixing of these states with the
higher-lying 5E(dxz,yz)

1 (ML ¼ �1), levels is possible. However, the
latter are much higher in energy and will be neglected here. The
effects of these states on themagnetic properties will be discussed
in Section 3.2.3 and 3.3. In this approximation, the spin–orbit
coupling (SOC) operator ĤSOC assumes the form of eqn (2).

ĤSOC ¼ �(z/4)L̂zŜz (2)

Within the rMS,MLi basis, ĤSOC is represented by a diagonal 10
� 10 matrix with elements �(z/4)MSML (MS ¼ 0, �1, �2 and
ML ¼ �2).58–61 The parameter z is the effective one-electron SOC
‘constant’ for FeII (see ref. 17 and 62 for a detailed discussion).
The energetic effect of low-symmetry perturbations on the
5E(dx2�y2) and

5E(dxy) sublevels can be described in terms of two
parameters d1 and d2 accounting for the splitting and mixing of

5E
�
dx2�y2

�
5E

�
dxy

�
ĤLF ¼

"�d1 d2

d2 d1

#
(3)

5j2i 5j�2i"
0 �d1 � id2

�d1 þ d2 0

#
(4)

these states as given by eqn (3). Following eqn (1), these
sublevels can be transformed into a ML ¼ �2 basis (eqn (4)).

The physical origin of d1 and d2 will be subject to a thorough
analysis in Sections 3.2.3 and 3.3. The Hamiltonian ĤSOC +
ĤLF + ĤZ (ĤZ ¼ the Zeeman operator) represented in the rML ¼
�2, MS ¼ �2, �1,0i basis, as well as energy and g-tensor
expressions (normalized to a m ¼ �1/2 pseudo spin)25 are given
in the ESI.† The [Fe(tpaR)]� single-molecule magnets from ref.
22 and 23 possess trigonally elongated geometries and a
5E(dxz,yz)

1 ground state. Here, SOC leads to two lowest magnetic
levels A1 and A2 which are split by the trigonal symmetry. Being
an equal mixture of total angular momenta with MJ ¼ +3 and
MJ ¼ �3, these states carry no magnetic moments. The
Chem. Sci., 2013, 4, 139–156 | 141
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complexes of the present study are completely different. The
ground state for linear complexes FeX2 is 5E(dxy,dx2�y2)

1

(complex 2, FeC2, can be ascribed as a trigonally compressed
one), which under the action of SOC leads to a E(MJ ¼ �4)
magnetic ground state. For both types of FeII-based single-
molecule magnets, and within the given approximation,

geometric distortions described by d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2 þ d2
2

p
s 0 do not

cause a splitting of the �MJ(MS s 0) pairs, leaving A1 and A2 in
the former type of complexes accidentally degenerate. Quite
differently, �MJ levels with MS ¼ 0 undergo a rst-order split-
ting (2d) depending on the magnitude of the distortion (in
energetic sense, d ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2 þ d2
2

p
s 0) but not on its direction

(i.e., on 4, tg4 ¼ d2/d1). From eqn (1)–(4), the origin of the
magnetic anisotropy arises; without off-axial distortions
ðd ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d1

2 þ d2
2

p
¼ 0Þ there is a 1 : 1 mixing between the

|dx2�y2i1 and |dxyi1 sublevels of the 5E term by SOC, and this
leads to the addition of an orbital angular momentum of 2 mB to
the net spin S ¼ 2 moment (4 mB). Focusing on the |MJ ¼ �4i
ground state magnetic pair, an Ising-type anisotropy with gz ¼
12 and gx,y ¼ 0 (d � z) is obtained. In the limiting case of very
large distortions (d [ z), the latter reduces to the spin-only
values of gz ¼ gx ¼ gy ¼ 8.

2.3 The 5E53 Renner–Teller effect

Unlike bent complex 6 and linear complex 7, the pseudolinear
FeX2 cores in 1–5 possess inversion symmetry. Therefore, no
linear vibronic coupling with the off-centric normal modes, 3,
which serve to distort the linear geometry to a bent structure is
possible. The energy lowering and energy splitting of the
5E(dx2�y2dxy)

1 ground state of the FeII complexes due to Renner–
Teller (RT) vibronic coupling is described by eqn (5),63–69 in
which the nuclear coordinates Qx and Qy are components of the
3 mode (eqn (6)), r is the RT radius (eqn (7)), and 4 (eqn (8))
denes the direction of the distortion.

E� ¼ 1

2
K3

�
Qx

2 þQy
2
� þ j

�
Qx

2 þQy
2
�2 � g

2

�
Qx

2 þQy
2
�2

¼ 1

2
ðK3 � gÞr2 þ jr4 (5)
Fig. 2 Variable adiabatic potential energy surface of a FeIIX2 complex with a doub
the case of the 5D5p Renner–Teller effect: weak coupling – term splitting with
distributions h|j�|

2i are shown with dotted lines.

142 | Chem. Sci., 2013, 4, 139–156
Qx ¼ rcos 4; Qy ¼ rsin 4 (6)

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qx

2 þQy
2

q
(7)

tg4 ¼ Qy/Qx ¼ d2/d1 (8)

The parameters K3 and j describe the effect of the harmon-
icity and anharmonicity, respectively (i.e., two terms due to
forces which tend to preserve the linear geometry). The g-term
quanties the vibronic force that leads to distortions and,
accordingly to a splitting (g(Qx

2 + Qy
2)) of the 5E(dx2�y2,dxy)

1

ground state (eqn (5)). Depending on whether K3 > g or K3 < g,
two different situations are encountered (see Fig. 2).

In the rst case, no new minima in the adiabatic ground
state potential energy surface (APES) arise; however, the adia-
batic approximation is violated by the vibronic mixing (via a
term gQxQy) between the two sublevels. The other extreme, K3 <
g, leads to a negative curvature for the lower surface, and
therefore to dynamical instability. As a consequence, new
minima on the APES corresponding to bent structures arise.
Energy expressions, derived in the ESI,† allow us to relate the
parameters K3, j, and gwith the geometry of the minimum of the
adiabatic ground state potential surface (APES) (rmin), the
Renner–Teller stabilization energy ERT, and the energy of the
vertical Franck–Condon transition EFC from the lower to the
upper sheet of the APES (at the position of the minima) in terms
of g, K3 and j. In turn, using these expressions g–K3 and j have
been deduced from DFT values of rmin and ERT, obtained from a
truncated FeC2 model complex (see Fig. 1). An estimate for K3 ¼
h-u3 is obtained using he corresponding Zn(CH3)2 analog, which
lacks RT-activity. This leads to the parameters h-u3 ¼ 131 cm�1,
g ¼ 461 cm�1, and j ¼ 8.2 cm�1. Energy eigenvalues and
eigenfunctions of vibronic levels were calculated using a
Hamiltonian of the form:
Ĥ ¼ Ĥvib + ĤSOC + ĤRT + ĤZ (9)

with the harmonic vibrational Hamiltonian Ĥvib including the
potential and kinetic energy terms and ĤSOC, ĤRT, and ĤZ,
ly degenerate 5D ground state with respect to the off-centric displacement Qx in
out instability (left); strong coupling – dynamic instability; nuclear probability

This journal is ª The Royal Society of Chemistry 2013
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representing the spin–orbit coupling, Renner–Teller, and Zee-
man energy operators, respectively. The Hamiltonian of eqn (9)
has been set up in the basis rJi of the products of electronic
wavefunctions rfii ¼ rML ¼ �2, MS ¼ �2, 1, 0i, i ¼ 1 : 10 and
harmonic vibrational |cj(Q

0
xi$|ck(Q0

yi wavefunctions up to level
nvib (see ESI† for details). Isothermal magnetic susceptibilities
and magnetizations were calculated employing the representa-
tion of ĤZ in the basis rJi and making explicit use of the
calculated eigenvectors following procedures outlined
previously.46
Fig. 4 Interactions approximating the FeII–ligand bond in FeN2 complexes 1, 3–
4, 6, and 7 (upper), FeO2 complex 5 (middle), and FeC2 complex 2 (lower), and
their angular overlap model parameterizations.
2.4 Ligand eld analysis of the ab initio results

Ab initio results were analyzed by mapping the ab initio multi-
reference wavefunctions and energies onto ligand eld theory
in the manner developed in detail in ref. 70. In this treatment,
the LF Hamiltonian is viewed as an effective Hamiltonian that
acts on the subspace of states originating from a given dn-
conguration of a transition metal subject to perturbations
from surrounding ligands. For an FeII center without including
SOC, the d6 conguration spans 5, 45 and 50 electronic states
with total spins of S ¼ 2, 1, and 0, respectively. The LF Hamil-
tonian within this basis is expressed in terms of a LF 5 � 5
matrix for one d-electron and atomic like parameters of inter-
electronic repulsion B and C. The energies of the ve S¼ 2 states
for FeII do not depend on the parameters B and C, and the LF
matrix for the ve S¼ 2 levels can be identied with the 5� 5 LF
matrix for one d-electron. From the possible parameterization
offered by the LFT, the angular overlap model (AOM) nds most
favor among chemists.71–73 This model expresses the matrix
elements of the 5 � 5 LF matrix in terms of parameters dened
for well-aligned d-orbitals of s- and p-type, el (l ¼ s, pc, ps)
multiplied by factors Flu(ql, 4l, jl) that depend solely on the
angular geometry of the ligands (l, described by the Euler angles
ql, 4l, jl). AOM energy expressions for a FeX2 complex with C2v

symmetry (with a choice of Cartesian axes as shown in Fig. 3)
have been derived and listed in the ESI.† The parameters es, epc,
and eps quantify the energy destabilization of the FeII d-orbitals
due to their negative overlap with the corresponding well-
aligned ligand orbitals of s- and p-type (see Fig. 4), where
Fig. 3 Cartesian axes choice and geometrical parameters for the FeX2 core in
1–7.

This journal is ª The Royal Society of Chemistry 2013
anisotropy of the interactions of p-type, epc and eps, is taken
into account (see Fig. 3 and 4 for the denition of the angle q

and the AOM parameters, respectively). For a linear FeX2

complex (q¼ 0�) with dominating ligand donor functions of es >
epc ¼ eps ¼ ep > 0, all parameters being positive in this case, the
orbital energy order d(dx2�y2, xy) < p(dxz,yz) < s(dz2) results:

e
	
d
�
dx2�y2 ;xy

�
 ¼ 0

e
	
p
�
dxz;yz

�
 ¼ 2ep

e½sðdz2Þ� ¼ 2es

(10)

AOM parameters are traditionally deduced from a t to
electronic d–d transitions observed in absorption and emission
spectra of transition metal complexes. This procedure is oen
(although not always) challenging, because the number of
parameters is too large to allow for a unique determination.
Recently, a procedure was proposed allowing one to deduce the
LF parameters from ab initio calculations,70 which can be
summarized as follows. First, focusing on the S ¼ 2 states, the 5
� 5 CI matrix in the basis of the Slater Determinants (SDs) built
up from the metal-3d based molecular (CASSCF) orbitals is
calculated. Focusing on SDs with MS ¼ S ¼ 2, we note that each
single SD is a spin eigenfunction (i.e., SDs and conguration
state functions (CSFs) are identical in this case). With the
output of the electronic structure program, the CASSCF eigen-
values (EICASSCF) and eigenfunctions CCASSCF(1 : 5, I) (I ¼ 1 : 5)
are directly available. Let us denote the diagonal matrix con-
structed from EICASSCF with LCASSCF(E

I
CASSCF,I ¼ 1 : 5). We then

deduce the LF matrix HLFT ¼ {HLFT
IJ ,I,J ¼ 1 : 5} using the

transformation:

HLFT
CASSCF ¼ CCASSCFLCASSCFC

†
CASSCF (11)

Dynamic correlation effects are introduced via diagonal
corrections to LCASSCF as provided by second-order many-body
perturbation theory in form of the NEVPT2 method (DLNEVPT2,
eqn (13)). The AOM parameters (pl) are then obtained by a least-
squares t based on eqn (14), where the matrices HAOM and
HLFT

NEVPT2 have been transformed into the traceless forms
HAOM

b (pl) and HLFT
NEVPT2,b, respectively.
Chem. Sci., 2013, 4, 139–156 | 143
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Fig. 5 Molecular orbitals (DFT, PBE-functional) with contribution from the 3d-
orbitals of FeII as exemplified using the Fe(NH2)2 model complex. From bottom to
top, the s-interactions (left) are bonding and weakly and strongly antibonding,
while the ps-interactions (right) are bonding and antibonding.
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HLET
NEVPT2 ¼ CCASSCFLNEVPT2C

†
CASSCF (12)

LNEVPT2 ¼ LCASSCF + DLNEVPT2 (13)

HAOM
b (pl) ¼ HLFT

NEVPT2,b (14)

Adopting the one-electron parameters without changes, the
parameters B and C were obtained from the computed energies
of the spin–forbidden transitions, which, in the present case,
are the transitions from the 5E ground state to the triplet ligand
eld excited states. Finally, using es, ep, B, and C and switching
on SOC, we x the value of z from the computed energies of the
5E ground state SOC split sublevels. These calculations were
performed through an interface between the ORCA program
and the well-established ligand eld program package AOMX.74

3 Results and discussion
3.1 Chemical bonding and vibronic activity of two-
coordinate complexes of FeII

It follows from X-ray data that the FeX2 cores in complexes 1–5
and 7 are linear. However, due to the nearest and next-nearest
neighboring atoms of the FeII center, the electron density
distribution deviates from idealized DNh symmetry. It has been
shown that the second coordination sphere affects metal–
ligand bonding and results in dramatic changes to the color and
magnetism of transition metals in solid matrices.75 Of imme-
diate interest is the extent to which the next-nearest atoms in
the coordination sphere of the FeII center affect the magnetic
properties of complexes 1–7. Depending on the number of
strong bonds formed by the donor atoms C, N, or O (see Fig. 4),
these complexes can be subdivided into three classes. With the
C donor involved in three strong bonds to neighboring Si
atoms, and neglecting hyperconjugation, there are no ligand
orbitals available for FeII–C interactions of p-type in complex 2.
The local symmetry around the Fe–C bond is C3v. In complexes
Table 1 Molecular orbital energies and compositions characterizing the participat

Fe(CH3)2 Fe(NH2)2

s-type orbitals s–pc type orbitals
�7.45(bd): 11(4s) + 29(3dz2) [2] �9.55(bd): 8(4s) + 2
�5.40(weakly ab):
20(4s) + 50(3dz2) + 16(3dx2�y2) [2]

�4.91(weakly ab):
16(4s) + 48(3dz2) + 2

�5.37(nb):
4(4s) + 10(3dz2) + 10(3dxz) + 73(3dx2�y2) [1]

�4.06(nb):
8(4s) + 16(3dz2) + 72

�0.32(ab): 47(4s) + 13(3dz2) [0] �0.56(ab): 42(4s) +

p-type orbitals ps-type orbitals
�5.69(nb): 86(3dxz) + 10(3dx2�y2) [1] �5.94(bd): 37(3dyz)
�5.65(nb): 95(3dyz) [1] �3.58(ab): 66(3dyz)
d-type orbital pc-type orbital
�4.60(nb): 99(3dxy) [2] �4.88(nb): 96(3dxz)

d-type orbital
�4.99(nb): 100(3dxy

a bd – bonding; ab – antibonding; nb – non-bonding; quasi restricted or
regarding these calculations); orbital electron occupation numbers are gi

144 | Chem. Sci., 2013, 4, 139–156
1, 3, 4, 6, and 7, with N-amido donors, there is a plane dened
by N and the directly connected two atoms X forming N–X
bonds; here X represents C and Si (1), C and H (3, 4, and 6), or
two C atoms (7). As the FeII center is located in the same plane
as the N(sp2)-donor atoms and their nearest neighbors, there is
a well-dened direction for the p-interactions between FeII

center (according to Fig. 4, the appropriate iron orbital is dyz)
and the amido p-electron pair of the same symmetry (dened
here as ps type in AOM). Since the Fe–N bond can be considered
as weaker than the N–X bonds, we assign the local Fe–ligand
bond a pseudosymmetry of C2v. Finally, in complex 5 there are
two donor lone-pairs; one of these pairs, similar to Fe–N, has
the symmetry appropriate for ps-type overlap with the out-of-
the Fe–O–C plane dyz orbital, while the other pair (located
within the Fe–O–C plane) is available for pc-type overlap with
the metal dxz orbital. This arrangement denes a local Cs

pseudosymmetry.
ion of the FeII orbitals in the bondinga

Fe(OH)2

s–pc type orbitals
0(3dz2) [2] �11.86(bd): 5(4s) + 12(3dz2) [2]

7(3dx2�y2) [1]
�7.84(bd): 1(4s) + 6(3dz2) � 5(4s) + 13(3dxz) [2]

(3dx2�y2) [1]
�5.24(weakly ab):
17(4s) + 57(3dz2) + 16(3dxz) + 3(3dx2�y2) [1]

15(3dz2) [0] �4.72(weakly ab):
7(4s) + 6(3dz2) + 71(3dxz) + 2(3dx2�y2) [1]
�4.33(nb): 2(4s) + 3(3dz2) + 95(3dx2�y2) [2]
�1.08(ab): 49(4s) + 17(3dz2) [0]
ps-type orbitals

[2] �7.33(bd): 24(3dyz) [2]
[1] �4.38(ab): 78(3dyz) [1]

d-type orbital
[1] �5.14(nb): 100(3dxy) [1]

) [1]

bitals from DFT optimized model complexes (see ESI† for more details
ven in square brackets.

This journal is ª The Royal Society of Chemistry 2013
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Fig. 6 Adiabatic potential energy (in cm�1) surfaces (APES) for M(CH3)2 (M ¼
Mn, Fe, Zn) model complexes, illustrating dynamical instabilities in the cases of
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Molecular orbital energies and Fe orbital percentages,
deduced from quasi restricted DFT calculations performed on
truncated Fe(CH3)2, Fe(NH2)2 and Fe(OH)2 model complexes
(see Fig. 1) are listed in Table 1. Focusing on Fe(CH3)2, we note
that, as expected, the Fe–C bonding is solely governed by strong
Fe–C s-interactions, with the main participation coming from
Fe 4s and 3dz2 orbitals; other orbitals (dxz, dyz, and dxy) are non-
bonding due to a lack of ligand orbitals of appropriate
symmetry. The interaction of the metal centered 3dz2 and 4s
orbitals with the ligands gives rise to bonding, antibonding, and
weakly antibonding MOs, as illustrated for Fe(NH2)2 at the le
of Fig. 5. It is the intermixing of 4s into the nominally 3dz2
Fe-based orbital (as strong as 20% for Fe(CH3)2 and 16% for
Fe(NH2)2) which converts this orbital from strongly antibonding
(typical for octahedral complexes) to weakly antibonding in the
FeX2 complexes 1–7.

As will be shown below, this has an important effect on the
magnetic properties. In contrast to Fe(CH3)2, the out-of-plane
type of p-bonding (ps) is essential in Fe(NH2)2 and Fe(OH)2.
Here, a strong mixing between the FeII(dyz) and the corre-
sponding ligand functions takes place, giving rise to the
bonding and antibonding MOs, as illustrated for Fe(NH2)2 at
the right in Fig. 5. The Cs symmetry of the Fe–O–Hmoiety leads
to a mixing of the metal-based orbitals dz2, dxz, and dx2�y2 (all
behave totally symmetric with respect to the Fe–O–H symmetry
plane). In a strictly linear complex, such as Cl–Fe–Cl, these
orbitals would have s, pc, and dc character, respectively (see
eqn (10)). However, based on the dz2, dxz, and dx2�y2 Fe

II orbital
percentages (57%, 71%, and 95% in the MOs with energies
�5.24, �4.72 and �4.33 eV, respectively) the assignment given
by the AOM (eqn (10)) is roughly correct.

Linear (DNh) FeX2 complexes with a 5D(dx2�y2,xy) ground state
are intrinsically unstable with respect to geometric distortions
since they are Renner–Teller active. Thus, bending of these
complexes can cause the strictly non-bonding dx2�y2,xy orbitals
to become involved in bonding/antibonding interactions due to
mixing of these orbitals with thep(dxz, yz) and s(dz2) orbitals and
their ligands counterparts. The reduction in total energy is the
driving force for such distortions. Calculating geometries from
rst principles for such complexes is still far from trivial. First,
at the point of orbital degeneracy and close to it, DFT is not
applicable, while CASSCF is usually not accurate enough and
many body perturbation approaches, such as NEVPT2, suffer
from a lack of availability of analytic gradients, at least for larger
molecules. Second, a ground state APES with two minima at
distorted geometries is stationary at the point of degeneracy,
Table 2 Geometrical parameters (bond distances in Å, bond angles in �), energy
stabilizations, Renner–Teller Radii rmin and C–M–C bending mode vibrational
energies for Zn(CH3)2, Mn(CH3)2, and Fe(CH3)2 model complexes from DFT
geometry optimizations

R 2(90��q) E� rmin n[d(X–Fe–X)] (cm�1)

Zn(CH3)2 1.952 180 0 0 136
Mn(CH3)2 2.064 158.3 �233 1.80 124
Fe(CH3)2 2.006 144.5 �964 2.50 134

This journal is ª The Royal Society of Chemistry 2013
implying that the energy gradient at that point is zero. There-
fore, while keeping to DFT, use of a distorted structure as the
starting geometry in a geometry optimization is advisable.
Third, the APES is highly anharmonic, implying the require-
ment of higher-order polynomials (up to order 8 for the cases
studied below) in the Herzberg–Teller series66 expansion to
model the energy of the 5D(dx2�y2,xy) APES.

DFT geometry optimizations of FeX2 (X ¼ CH3
�, NH2

�, and
OH�) starting from bent geometries resulted in a bent structure
for Fe(CH3)2 with an X–Fe–X angle of 144.5�, but resulted in linear
structures for Fe(NH2)2 and Fe(OH)2 (see Table 2). Based on a
normal mode analysis, all geometrically optimized structures
with linear FeX2 cores were calculated to be stable with respect to
X–Fe–X bending. For the reasons stated previously (breakdown of
the adiabatic approximation for closely-lying electronic levels),
numerical values of the harmonic X–Fe–X frequencies are ques-
tionable. However, based on the very low values of these
frequencies (see Table 2), they are still strongly indicative of so
mode behavior. The quantication of the effect of the latter on
the magnetic properties will be analyzed below (see Section
3.2.2). A scan of the ground state energy versus the X–Fe–X angle
for Fe(CH3)2 and the analogous Mn(CH3)2 and Zn(CH3)2
complexes with half lled (d5) and closed shell (d10) electronic
congurations for the MII center, respectively, is shown in Fig. 6.
To avoid the point of degeneracy, in these calculations X–M–X
angles higher than 170� were excluded.

A least-squares t to the data with a polynomial of degree 8
(solid lines in Fig. 6) allows one to deduce the energy of the linear
geometry via interpolation. Remarkably, not only Fe(CH3)2 but
also Mn(CH3)2 is stabilized by bending. It is interesting to note,
that [FeCl2]

+ (which is isoelectronic with Mn(CH3)2) is
Mn(CH3)2 (3d–4p pseudo Jahn–Teller coupling) and Fe(CH3)2 (3d–4p pseudo
Jahn–Teller coupling superimposed by a (stronger) 5E53 Renner–Teller effect).
DFT optimized M–ligand bond distances are almost unchanged along the
distortion path and have been fixed at their values at the minimum of the APES
(see Table 2). The APES has been constructed by varying the angle q (see Fig. 3 for
its definition) between 45� and 80� in steps. Solid lines reproduce the data in
terms of a polynomial of the degree 8: P(1)$Q8 + P(3)$Q6 + P(5)$Q4 + P(7)$Q2 +
P(9) with the following values of the coefficients P(1), P(3), P(5), P(7), and P(9):
0.0288, �1.7513, 43.0557, �362.0133, and 953 for Fe(CH3)2; 0.0181, �1.1037,
27.7868, �150.9680, and 232.8404 for Mn(CH3)2; 0.0514, �0.6800, 1.0285,
459.3716, and�234.2324 for Zn(CH3)2. Here,Q is expressed by the variable angle
q at fixed values of the metal–ligand bond distance R (from Table 2) according to
Q ¼ 2R(90

� � q)(p/180).

Chem. Sci., 2013, 4, 139–156 | 145
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calculated by DFT to be distorted as well, with an X–Fe–X angle
of 132.2� and with an appreciably large stabilization energy of
1250 cm�1. The origin of this effect is found in the different
roles played by the 4px,y valence orbitals of Fe

II in the linear and
bent congurations, respectively (see ESI†). Being non-bonding
(due to their high energy separations from the ligand orbitals)
and of different parity (compared to 3d), the 4px,y AOs are
essentially non-bonding in linear Mn(CH3)2. As illustrated in
the ESI,† bending leads to a considerable mixing of 4px,y into
3dyz,xz, because both orbitals transform under the same irre-
ducible representation in C2v. This mixing, or partial hybrid-
ization, leads to an increase of both s- and, to a lesser extent, p-
type metal–ligand overlap. The effect can be considered to be
analogous to 3d–4s mixing for linear geometries but is ener-
getically less pronounced. The extra electron in the dx2�y2,xy

orbital pair leads to an enhancement of the distortion (rmin) and
an additional energy stabilization (E�) as the comparison
between Mn(CH3)2 (rmin ¼ 1.80 Å, E� ¼ �233 cm�1) and
Fe(CH3)2 (rmin ¼ 2.50 Å, E� ¼ �964 cm�1) shows (see Fig. 6 and
Table 2). Using data in Table 2, parameters of the vibronic
coupling model were derived as specied in Section 2.3.
3.2 Electronic (vibronic) levels and magnetic properties

3.2.1 THE STATIC MODEL. The d6 conguration of the FeII

centers in complexes 1–7 gives rise to 5 quintet states with
NEVPT2 energies computed on the basis of the crystal struc-
tures listed in Table 3. The ground state of all complexes is a
quintet 5E state with an energy that is lower by 15 200–20 600
cm�1 than that of the lowest triplet state.

The electronic absorption spectrum of 1 in 2-methylte-
trahydrofuran consists of a broad asymmetric band centered at
8500 cm�1 (see ESI†). Its simulation with two Gaussian enve-
lopes led to the identication of the energies of the two expected
d–d transitions centered at 7700 and 9400 cm�1, respectively.
These numbers compare well with the calculated CASSCF/
Table 3 Energies (in cm�1) of S¼ 2 states, of the lowest excited S¼ 1 state (3A), and
NEVPT2 calculations of linear FeX2 complexes with geometries from X-ray diffraction
statesa

Electronic statea 1 2 3

5E(dxy)
1 0 0 0

(dx2�y2)
1 164 92 241

5E(dxz)
1 3726 4760 2080

(dyz)
1 10 468 [9400] 4799 8156

5A(dz2)
1 7068 [7700] 5087 9190

3A 18 023 20 622 14 94
E(1) 0 0 0

0.002 0.001 0.013
A1,A2(1) 189.8 195.2 176.4

190.4 195.3 179.8
E(2) 322.8 353.0 286.6

485.8 444.6 529.1
E(3) 612.8 602.0 632.0

625.0 603.8 646.6
A1,A2(2) 810.1 799.7 822.0

810.3 800.0 822.5

a Experimental transition energies from near-IR d–d spectra of 1 are liste

146 | Chem. Sci., 2013, 4, 139–156
NEVPT2 transition energies (6936 and 10 062 cm�1). We
accordingly assign these as electronic transitions from
5E(dx2�y2,xy)

1 to 5A1(dz2)
1 and the 5E(dyz)

1 split component of the
5E(dyz,xz)

1 state, with the lower energy transitions assigned to
the 5E(dxz

1) component and the even lower transitions within
the 5E(dx2�y2,xy)

1 SOC sublevels manifold lying outside the
spectrally accessible energy range. Deviations from axial
symmetry (see Section 3.1) lead to a non-relativistic ground state
splitting that is lowest for 2 (92 cm�1) and increases from 4 (381
cm�1) to 7 (766 cm�1) and 6 (1246 cm�1). The 5E ground state
splitting for complexes 1, 3, and 5 (164, 241, and 222 cm�1,
respectively) are intermediate between those of 2 and 4 and thus
lie outside the observed trend. This behavior will be analyzed
below. The magnetic sublevels (classied according to the D3

symmetry encountered in complex 2) arising from the 5E
ground state aer SOC are also included in Table 3. The
ordering of these sublevels and their relative energy separations
closely follows the energy expressions derived from a simplied
treatment (see ESI†) in which only the in-state 5E SOC is
considered. This behavior reects the dominant role of SOC,
which widely suppresses low-symmetry splitting of all sublevels
pairs with non-zero ML. In particular, splitting of the ground
state magnetic sublevels |ML¼ +2,MS¼ +2i and |ML¼�2,MS¼
�2i, through mixing with the topmost state |ML ¼ �2,MS ¼ +2i
and |ML ¼ +2, MS ¼ �2i, respectively, is prevented by the large
energy gap (2z z 800 cm�1) between the two sublevels. This
splitting is more pronounced for the rst excited states
|ML¼ +2,MS¼ +1i and |ML¼�2,MS¼�1i, which interact with
their respective |ML ¼ �2, MS ¼ +1i and |ML ¼ +2, MS ¼ �1i
counterparts, because the former states are separated by a
twofold smaller energy (z z 400 cm�1). Being not affected by
SOC, the state E |ML ¼ �2, MS ¼ 0i is the only one that is
strongly inuenced by off-axial distortions; its splitting is
identical to that of non-relativistic 5E ground state (see Table 3).

Using all of the SOC split sublevels of 5E ground state
parentage and their associated wavefunctions, magnetizations
of the spin–orbit split components of the lowest 5E (D3 symmetry notations) from
data and accounting for the complete set of the 5 quintet and 45 triplet electronic

4 5 6 7

0 0 0 0
381 222 1246 766
2372 5004 8829 6820
8057 7124 2409 7649
9623 11 002 9907 8409

4 14 826 16 813 20 176 15 947
0 0 0 0
0.022 0.004 0.078 0.020
158.4 183.9 78.1 122.3
163.2 185.6 84.9 123.3
242.7 300.9 111.2 172.2
624.6 521.4 1347.5 937.6
704.4 632.8 1373.2 985.7
710.1 641.5 1384.4 986.8
870.4 820.4 1464.7 1106.7
870.7 820.5 1464.8 1106.8

d in square brackets.

This journal is ª The Royal Society of Chemistry 2013
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Fig. 7 Upper: experimental (blue squares) and calculated (NEVPT2, red circles)
magnetic susceptibility data for complex 1 in the temperature range from 2 to
300 K under a static applied dc field of 1000 Oe. Lower: experimental (squares)
and calculated (NEVPT2, red circles) isothermal magnetization M vs. H/T for
complex 1.
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(M) and susceptibilities (cT) were calculated for 1–6. NEVPT2
values for cT and M for complexes 1 and 2 are both in good
agreement with experimental data (see Fig. 7 and ESI†). The
direct-current magnetization measurement at 1.85 K of the
same crystalline sample as used for the Mössbauer study28

yielded Mz ¼ 5.82 mB, which is very close to the NEVPT2 result
(5.98 mB) for a sample of crystallites fully aligned with the
applied magnetic eld. The experimental data given in ref. 55
are also in good agreement with the NEVPT2 result; however,
here the NEVPT2 results have been converted to a powder
average. The error for the data in ref. 28 is less than 3% away
from the maximal achievable magnetic moment of 6 mB (gM

0
J,

g ¼ 2, M
0
J ¼ 3).

The situation changes for complexes 3–5 and 6. Here, the
comparison between theory and experiment for cT and M (see
Table 4 Experimental and calculated (using molecular geometries from X-ray da
magnetization (M) at 300 K and 2 K for complexes 1–6 (static model) and values of th
to fit the magnetic susceptibility data

Complex 1 Exp(calc.) 2 Exp(calc.) 3 Exp(ca

(cT)300K 4.45(4.76) 4.78(4.82) 3.35(4.3
f300K 0c 0c 0.133
(cT)2K 4.17(4.22) 4.33(4.30) 3.73(4.8
f2K 0c 0c 0.082
MHTLF

a 2.47(2.48) 1.50(1.42) 1.23(1.4
MLTHF

b 3.00(3.00) 3.24(3.04) 2.74(3.1

a MHTLF (high-temperature low-eld): T ¼ 5 K, H ¼ 1 T. b MLTHF (low-tempe
limit corresponding to a value of f close to 0.

This journal is ª The Royal Society of Chemistry 2013
Table 4 and ESI†) shows that the calculated values are system-
atically larger than the experimental ones. The same complexes
3–5 display a drastic reduction (by as much as two to three
orders of magnitude) in their relaxation times, as compared to 1
and 2.55 One could speculate that spin–orbit coupling (z), which
is usually slightly overestimated in post Hartree–Fock calcula-
tions,46 might be responsible for the observed deviations.
However, using empirically reduced values of z (accounting for
the relativistic nephelauxetic effect17 in the crudest possible way
with an orbital reduction factor k) does not alleviate the prob-
lems. Thus, focusing on complex 3, both cT and M can only be
brought into agreement with experiment by using an anoma-
lously low orbital reduction factor k ¼ 0.6 (see ESI†). Hence, the
deviations between theory and experiment must have a different
origin, as will be discussed in detail below.

3.2.2 DYNAMIC VIBRONIC COUPLING. From the preceding
analysis it becomes clear that a model based on a static
distortion is not able to account for the anomalously reduced
magnetic moments reected in the measured susceptibilities
and magnetizations of complexes 3–6. As detailed in Section
2.3, the 5E electronic state is vibronically unstable. In order to
study the effect of this instability on the magnetic properties,
the energies and wavefunctions of the vibronic levels for the in-
state 5E53 vibronic coupling problem were computed utilizing
the set of vibronic parameters K3 ¼ h-u, g and j adjusted to the
ground state APES of Fe(CH3)2 (see Section 2.3). Variation of the
vibronic coupling strength is accounted for in terms of the
dimensionless parameter (f) which scales the Renner–Teller
vibronic coupling constant g as well as the vibronic anharmo-
nicity parameter j (f$g and f$j, respectively), while keeping the
harmonic frequency of the 3 X–Fe–X bending mode (K3 ¼ h-u ¼
131 cm�1) unchanged. By increasing the value of f from 0 (static
limit) to 1 (the strong coupling limit adjusted to the energy
landscape pertaining to Fe(CH3)2), the effect of the vibronic
coupling strength on cT and M was systematically traced.
Vibronic energy levels as functions of the parameters f are
plotted in Fig. 8. Points at the le hand side of the diagram (f ¼
0) correspond to energies of vibronic levels represented by basis
functions built up as simple products of electronic |MJ ¼ ML +
MSi and vibrational |ck(Q

0
x)cl(Q

0
y)i parts, with energies of the

uncoupled electron and nuclear motions given by eqn (15) (see
ESI† for a visualization of the energy levels in this limiting case).
ta, NEVPT2 results) values of the magnetic susceptibility (cT) and the isothermal
e vibronic coupling strength parameter f of a dynamic Renner–Teller model utilized

lc.) 4 Exp(calc.) 5 Exp(calc.) 6 Exp(calc.)

5) 3.37(4.76) 3.19(4.87) 2.87(3.99)
0.132 0.162

0) 2.88(4.30) 2.87(4.46) 2.03(3.44)
0.099 0.099

4) 0.96(1.43) 0.92(1.47) 0.74(1.17)
0) 2.14(3.11) 2.06(3.15) 1.93(2.88)

rature high-eld): T ¼ 1.8 K, H ¼ 7 T. c Marks the appearance of a static

Chem. Sci., 2013, 4, 139–156 | 147

http://dx.doi.org/10.1039/c2sc21394j


Fig. 8 Upper: vibronic energy levels from calculations on a Fe(CH3)2 model
complex in the energy range below 900 cm�1 versus the vibronic coupling
strength parameter f scaling the vibronic parameters g ¼ 461 cm�1 and j ¼ 8.19
cm�1 of eqn (5). Lower: low energy range of the five lowest vibronic states
responsible for the magnetic behavior (h-u3 ¼ 131 cm�1). The ground state E(1)
and the lowest excited state E(2) responsible for the energy barrier Ueff of the
Orbach relaxation mechanism are depicted in red.

Fig. 9 Dependence of the z-components of the g-tensor in the lowest five
thermally accessible magnetic states on the vibronic coupling strength
parameter f.

Fig. 10 Adiabatic potential energy surface in the strong coupling limit (f ¼ 1).
The inversion splitting of spin–orbit vibronic levels rationalizing the reduction of
the orbital magnetic moments is schematically presented.
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E(MJ ¼ ML + MS,k, l) ¼ �(z/4)MLMS + (k + l + 1)h-u (15)

A mixing of these wavefunctions for non-zero f leads to the
opening of a gap between the ve lowest levels and the other
excited states (see Fig. 8, upper) and this gap increases with f.
Thus, at values of f close to 0.1, a discontinuity in the spectrum
of the magnetic excitations is predicted to occur.

As illustrated by the dependence of the z-components of the
g-tensor (see Fig. 9), the opening of the gap leads to a dramatic
148 | Chem. Sci., 2013, 4, 139–156
decrease in the orbital contributions to the net magnetic
moment and a concomitant change in the magnetic properties.
From the energies and term assignments of the ve lowest
magnetic levels (see Fig. 8, lower), we deduce that the level
ordering (E < E < A1) in a dynamic Renner–Teller regime is
completely different than the one that applies in the static limit.
In both cases the lowest sublevels remain doubly degenerate.
Thus, the main difference is that the electronic degeneracy gives
way to a vibronic one. One can qualitatively understand this
behavior

jML ¼ � 2;MS ¼ �2;c0ðQÞi jML ¼ H2;MS ¼ �2;c2ðQÞi2
66664
1

2
hu3 � z

1

2
ffiffiffi
2

p fg

1

2
ffiffiffi
2

p fg
5

2
hu3 þ z

3
777775

(16)

through a two state model by restricting attention to a single
interacting mode Q.63 Starting from the weak vibronic coupling
limit (small f), the ground state is represented by |ML ¼ +2,
MS ¼ +2, co(Q0)i and |ML ¼ �2, MS ¼ �2, co(Q0)i. These wave-
functions can only vibronically mix with |ML ¼ �2, MS ¼ +2,
c2(Q0)i and |ML ¼ +2, MS ¼ �2, c2(Q0)i, respectively, as given by
the matrix in eqn (16); here, co(Q0)and c2(Q0) are the ground
state and second excited state harmonic oscillator wave-
functions, respectively. For small f the separation between the
two states (2(2 + h-u)) is large, while the mixing is small
(½ð1=2 ffiffiffi

2
p Þ fg � 2ðzþ h-uÞ�, Fig. 2, le).

Thus, there are negligible contributions of the ML ¼ H2
orbital moments of opposite sign to the ground state magnetic
pair ML ¼ �2. The probability distribution for the nuclear
motion is close to Gaussian type |co(Q0)|2 (see Fig. 2, le) with a
maximum at the undistorted (linear) nuclear conguration. Let
us now assume the other extreme: the strong Renner–Teller
coupling limit of f¼ 1. Here, there is nearly 1 : 1 mixing between
the orbital moments ML ¼ +2 and ML ¼ �2, which are now
better approximated by the |dx2�y2

1i and |dxy
1i spatial compo-

nents and ground vibronic state described by two ground state
harmonic oscillator wavefunctions, displaced by 2Q

0
o in cong-

urational space relative to the undistorted geometry,
This journal is ª The Royal Society of Chemistry 2013
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Fig. 11 Calculated values of cT (H ¼ 1000 Oe) at 1.8 and 300 K as a function of
the vibronic coupling parameter f.

Fig. 12 Experimental cT data (H ¼ 1000 Oe) for complex 6 (red squares) and
theoretical values calculated using a model80,81 accounting for the simultaneous
presence of the low-symmetry ligand field (strain) and vibronic coupling of vari-
able strength f (where f ¼ 0 corresponds to the static limit of no vibronic
coupling).
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��dx2�y2 ;MS ¼ �2;c0

�
Q

0 �Q
0
o

�E ��dxy;MS ¼ �2;c0

�
Q

0 þQ
0
o

�E
�d1 izg0;0 þ d2

�izg0;0 þ d2 d1

2
4

3
5

(17)

|dx2�y2
1,MS ¼ �2,c0(Q

0 � Q
0
o)i and |d1xy,MS ¼ �2,c0(Q

0
+ Q

0
o)i (see

Fig. 10). Being of the same energy (d1 ¼ 0), these two wave-
functions are now mixed to rst order by spin–orbit coupling
through the matrix element izg0,0 (d2 ¼ 0), with g0,0 given by
exp(�Qo

2) (eqn (17)). The latter describes the vibrational overlap
between two displaced c0(Q

0 � Q
0
o) and c0(Q

0
+ Q

0
o) ground state

harmonic oscillator wavefunctions. Thus, the energy gap 2z,
being of the order of 600–800 cm�1 in a static limit, now
becomes strongly reduced by the quantity g0,0 (the Ham
reduction factor), which exponentially decreases with
increasing shis 2Q

0
o.

As illustrated by the dependence of cT on f (see Fig. 11, as
well as the ESI† for a similar but less monotonic effect on the
magnetization), for intermediate Renner–Teller couplings,
which imply ð1=2 ffiffiffi

2
p Þfgz2ðzþ h-uÞ, Fig. 2, right), a discontin-

uous change of the vibronic wavefunction and reduction of the
orbital momenta takes place. Under these conditions, the
nominal ground rML ¼ �2,MS ¼ �2, c0(Q0)i and excited rML ¼
�2,MS ¼ �2, c2(Q)i wavefunctions start to mix strongly, thus
leading to large reductions of the orbital moments. Nuclear
probability distributions also imply superposition between
ground state harmonic wavefunctions (c0(Q0)) with higher
excited vibrational states (in the given illustration with the
second harmonic c2(Q0), Fig. 2). This induces large amplitude
motions and dynamic distortions. Such a behavior may not
apply to the situation in the solid state where, due to crystal
packing forces (d1, d2 in eq. 17 s 0), transitions from dynam-
ically averaged distorted congurations to statically distorted
structures can take place. This point of view is supported by the
observation that the FeC2 core in complex 2 was reported to be
linear, while a derivative with a bent FeC2 geometry in Fe(Ar)2
(C–Fe–C ¼ 159.34(6)�) has also been reported.57 Likewise, while
a distorted X-ray structure of 6 was reported, the EPR spectrum
of the same compound in solution is only compatible with a
more linear complex.30 It is remarkable that by using this
dynamic Renner–Teller coupling model, room temperature
This journal is ª The Royal Society of Chemistry 2013
values of cT for complexes 2–5 could be tted with a single
adjustable parameter f that is conned to the narrow range
between f ¼ 0.142 � 0.015 (see Table 4). At lower temperatures,
however, smaller values of f (0.082–0.099) were required to t
the susceptibility. One would expect the inuence of vibronic
coupling to scale with temperature, and therefore f should
increase with increasing T. Likewise, at lower temperatures, one
would expect the value of f to decrease in concert with the
increasing inuence of the spin–orbit coupling, which attempts
to mitigate the vibronic effects in order to sustain the orbital
angular momentum, a so-called inverse Jahn–Teller effect.58–60

The proposed underlying nuclear dynamics of these linear X–
Fe–X complexes would be expected to show up in the ellipsoids of
thermal motion.76–79 An inspection of the low-temperature (T ¼
90(2) K for 1 and 3–7 and 100(2) K for 2) structures of complexes
1–6 indeed lends support the notion of vibronic activity in the
rst coordination sphere of the FeII centers. Temperature- and
eld-dependent structural studies should give more detailed
information about this interesting phenomenon.

3.2.3 NUCLEAR DYNAMICS, LOW SYMMETRY LIGAND FIELDS,
AND MAGNETIC RELAXATION. A large reduction of the magnetic
susceptibility and magnetization beyond the values predicted
by the static model is also observed for complex 6 with a bent
structure. Interestingly, it too shows anomalous thermal ellip-
soids, similar to those encountered for 1–5.55 Following the
concept of Section 3.2.2, we have to assume that some residual
vibronic activity remains in the distorted FeN2 core of 6.

Two critical remarks should be made regarding the quanti-
tative aspects of the Renner–Teller model presented in Sections
2.3 and 3.2.2. First, as has been stated in Section 3.1, the actual
symmetry of all complexes 1–7 is not DNh but lower, generally
C1, and the electronic ground state, assumed to be electronically
doubly degenerate (5E) is actually split. Thus, any vibronic
activity of the kind discussed in Section 3.2.2 should be viewed
as being of the pseudo Jahn–Teller type. Second, the actual
molecular complexes are large and possess a huge number of
degrees of freedom. Thus, many vibrations of 3-type may be
involved in vibronic coupling, which leads to an unapproach-
able multimode dynamic pseudo Jahn–Teller coupling
problem.
Chem. Sci., 2013, 4, 139–156 | 149
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Fig. 13 Variation of the spin–phonon coupling parameter Vs–ph across the series
from 1 to 5.
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Employing complex 6 as a model and following the general
theory of Ham,80,81 the effect of the static distortion on the
magnetic properties can be accounted for by considering
vibronic coupling and lower symmetry ligand elds (strain) as
independent perturbations. The latter is quantied by the strain
energy matrix Hstrain deduced here directly from the mapping of
the NEVPT2 results for the quintet state manifold onto ligand
eld theory (see ESI†). The dependence of the magnetic
susceptibility on the vibronic coupling strength under the strain
inuence for complex 6 is depicted in Fig. 12. It follows from
these results that the combined action of lowered symmetry and
vibronic coupling have a crucial effect in reducing the magnetic
susceptibility from its static limit (with a calculated room
temperature value of cT z 3.95 cm3K mol�1 for f ¼ 0) to values
closer (cT ¼ 3.05 cm3K mol�1 for f ¼ 1) to the experimentally
reported value of cT ¼ 2.87 cm3K mol�1.55 The observed (and
calculated) Curie–Weiss behavior of 6 results from the even
population of the lowest lying vibronic energy levels (at 0.0,
0.051, 2.32, 3.05, and 3.61 cm�1), which are well-separated from
other excited vibronic spin states.

The combination of reduced symmetry and vibronic
coupling also has a crucial effect on the magnetic relaxation
time, s. Low-temperature (T ¼ 2 K) eld-dependent magnetic
relaxation data have been used to quantify contributions to s
from quantum tunneling (st) and direct relaxation (sd) mecha-
nisms according to eqn (18) (ref. 55) (see Table 3 for a list of B1,
B2, and AH2 deduced from a least square t to such data).
Expressions connecting B1, B2, and Awith tunnel-splitting of the
ground state magnetic pair DE, the effective g-tensor value along
the easy direction (gz), and the

s�1 ¼ s�1
t þ s�1

d ¼ B1

1þ B2H2
þ AH2T (18)

B1 ¼ DE2s1/2 (19)

B2 ¼ (bgzs1/2)
2 (20)

A ¼ 3k
�
Vs-phgzb

�2
2ph4rvS5

(21)
Table 5 Intrinsic life-times (s1/2), tunnel-splitting energies (DE), and spin–
phonon coupling parameters (Vs–ph) obtained from B1, B2, and A values deduced
from the field-dependent magnetic relaxation data for complexes 1–5 at 2 K

s1/2 (s) DE (cm�1) Vs–ph (cm�1) so (s)
1 Ueff(cm

�1)1

1a 1.48 � 10�10 6.93 � 10�7 0.017 1 � 10�11 181
2b 2.27 � 10�11 5.10 � 10�7 0.024 4 � 10�9 146
3c 4.93 � 10�6 0.002 0.045 5 � 10�9 109
4d 4.27 � 10�11 2.85 � 10�6 0.078 4 � 10�8 104
5e 7.43 � 10�7 0.003 0.133 3 � 10�7 43

a gz ¼ 11.66, computed from CASSCF + NEVPT2 using the X-ray
geometry and r ¼ 1.149 g cm�3. b gz ¼ 11.95, computed from
CASSCF + NEVPT2 using the X-ray geometry and r ¼ 1.118 g cm�3.
c gz ¼ 9.60, calculated with a dynamic vibronic coupling model using
f ¼ 0.15 and r ¼ 1.182 g cm�3. d gz ¼ 9.60, calculated with a dynamic
vibronic coupling model using f ¼ 0.15 and r ¼ 1.127 g cm�3. e gz ¼
9.60, calculated with a dynamic vibronic coupling model using f ¼
0.15 and r ¼ 1.203 g cm�3.

150 | Chem. Sci., 2013, 4, 139–156
dipole–dipole spin–phonon coupling parameter, Vs–ph,82

respectively, are given in eqn (19)–(21). In addition, the intrinsic
life time of the magnetic ground state level s1/2 (for B1 and B2),
the sound velocity (vS), and the mass density r (for A) have been
taken into account.

Adopting a realistic value of 1.20 km s�1 for vS,83 the mass
density r from X-ray structures and the ab initio values of gz
(static, 1–2, or vibronic, 3–5), s1/2, DE and Vs–ph were deduced
(see Table 5) using the reported values B1, B2, and A (Table 3).55

There is no clear trend for the changes of s1/2 across the series 1–
6, which also differ from the lifetimes so due to the thermally
activated Orbach relaxation mechanism.

Impressively, there is clear trend of the spin–phonon
coupling parameter Vs–ph, which increases from 1 to 5 (see
Fig. 13). With one exception, complex 4, the tunnel-splitting
energy DE follows the same trend. It increases dramatically
ongoing from 1 and 2 to complexes 3 and 5. Not unexpectedly,
no relaxation time data could be recorded for complex 6. The
low-symmetry ligand eld in this complex leads to a 1 : 1 mixing
(via the matrix element of 475 cm�1) between the |ML ¼ +2> and
|ML ¼ �2> electronic levels, in addition to a mixing of |ML ¼ 0>
in the |ML ¼ �2> pair due to mixing via the off-diagonal matrix
element of 1602 cm�1. Both effects reduce the orbital moments
and facilitate quantum tunneling of the magnetization. Similar
effects on the relaxation times for complexes 1–5 emerge from
the plots of the corresponding matrix elements (see ESI†). A
second effect on the relaxation time at elevated temperature is
due to the narrowing of the energy gap between the ground and
the excited magnetic sublevels (see experimentally deduced
values of Ueff included in Table 5 in comparison with the energy
gap between the energy levels marked with red circles in Fig. 8,
lower). The anisotropy-reducing effect of the low symmetry
decreases on further symmetry lowering from nearly C2v (in 1, 3,
and 4 with one lone pair) to C1 (in 5 with two lone pairs) and can
be ascribed to bonding effects arising from the next-nearest
neighboring atoms of the FeII centers (see Section 3.3).

We note, however, that the changes of these matrix elements
across 1–6 are not monotonic and do not follow the observed
trend in s across the series.55 The reasons for such differences
may be twofold: (i) thermal ellipsoids of the L–Fe–L moieties
(see Fig. S1† in ref. 55) show that contributions from vibronic
coupling may be present in all complexes, and (ii) secondary
interactions of the FeII center with next nearest neighboring C
This journal is ª The Royal Society of Chemistry 2013
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Table 6 Angular overlap parameters (in cm�1) from an analysis of the multiplet energies calculated using NEVPT2 of FeX2 complexes 1–7 and the truncated linear
model clusters FeL2 (L ¼ CH3

�, NH2
�, OH�)

Parameter 1 2 3 4 5 6 7 Fe(CH3)2 Fe(NH2)2 Fe(OH)2

es 3351 2513 4418 4512 5255 5291 3977 1799 2478 3560
eps 5137 2364 3973 3860 3397 3414 4530 1757 5354 4478
epc 1828 2364 932 1018 2439 884 2321 1757 1454 2921
s(AOM)a 349 68 344 464 493 794 189 431 223 136
DE(5A1–

5B1) 442 18 373 346 108 308 291 15 519 221
E(5A1) s, pc 660 310 512 497 444 440 607 236 717 599
E(5B1) ps 248 292 139 151 336 132 316 221 198 378

a Standard deviations between calculated (using the listed set of AOM parameters) and NEVPT2 matrix elements within the quintet state manifold.
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atoms might be important. This is particularly relevant in 3–6,
where p-electron lobes due to C(sp2) atoms from the phenyl
substituents make relatively short contacts providing s/p
overlap to the FeII centers (Fe/C ¼ 2.588, 2.765, 2.792, and
2.817 Å, decreasing from 6 to 5 to 4 to 3, respectively). Such
interactions are absent in 1 and 2 where Fe–C(sp3) contacts
occur at much longer distances (2 � 3.621, 2 � 3.587 Å in 1 and
2 � 3.275, 2 � 3.369, and 2 � 3.504 Å in 2).
Fig. 14 Dependence of the quintet term energies on the distortion angle q (see
Fig. 3) for linear complexes with FeC2 (C2v, top), FeN2 (C2v, middle), and FeO2 (C2h,
lower) cores, as obtained using the set of parameters for complexes 2, 4, and 5,
respectively (see Table 6).
3.3 Ligand eld analysis of the ab initio results

The AOM parameters es, epc, and eps derived from the CASSCF +
NEVPT2 results are listed in Table 6. Compared to other
studies,70 standard deviations between LF (calculated using the
AOM parameter set) and ab initio matrix elements here are in
the expected range and show the adequacy of the LF approach
for the studied complexes. The AOM parameters are consistent
with values resulting from the t of the spectrum of the linear
complex FeCl2 (es ¼ 3500 cm�1, ep ¼ 2300 cm�1).84

The origin of the anomalously low calculated values of the
parameter es (in particular for the FeC2 complex 2) originates
from the stabilizing effect of 4s–3d mixing, which reduces
largely the Fe–X s-antibonding interactions in the nominally dz2
type MO (see Section 3.1). Because of this stabilizing effect (and
in contrast to the results obtained for the series of [Fe(tpaR)]�

complexes),22,23 a correlation between es and the Lewis ligand
basicity is not observed (see ESI†). Thus, the lowest value of es in
complex 2 (see Table 6) correlates with the greatest Lewis
basicity for the C ligator. Table 6 also reports AOM parameters
for the truncated model complexes Fe(CH3)2, Fe(NH2)2 and
Fe(OH)2. From a comparison between the sets of parameters of
the model complexes with those of 1–7, we can conclude that
there is a signicant tuning of the ligand eld strength for each
type of donor, C, N, and O, by the structure (substituents) of the
extended ligand framework. As follows from the parameter ratio
eps/epc [1, there is a large p-bonding anisotropy for the amido
ligands in 1, 3, 4, 6, and 7, and the large values of eps charac-
terize the amido ligands as strong p-donors. For N being
involved in two strong bonds to neighbor atoms, there are no
orbitals for p bonding in the Fe–NR2 plane. One should there-
fore expect epc to be zero. That this is not the case implies that
there are large electrostatic contributions to the LF parameters
for FeN2 complexes 1, 3, 4, 6, and 7. A similar conclusion can be
This journal is ª The Royal Society of Chemistry 2013
made based on the non-zero eps ¼ epc ¼ ep parameters deduced
from the ab initio results for complex 2 (compare with the zero
overlap due to such kind of interaction emerging from Table 1).
Chem. Sci., 2013, 4, 139–156 | 151
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Table 7 Interelectronic repulsion (B and C) and spin–orbit coupling (z) param-
eters (in cm�1) from an analysis of the multiplet energies calculated using NEVPT2
of FeX2 complexes (1–7)a

1 2 3 4 5 6 7

B 1512 1418 970 822 1090 602 1833
C 3245 3564 3782 3965 3734 4364 3030
s(B, C) 1012 402 1003 1072 952 746 325
z 413 407 426 459 420 822 591
s(z) 44 2 66 114 60 274 225

a Standard deviations s between the energies of electronic multiplets,
calculated using the given set of parameters B, C (deduced from a
least squares t to energies of the ground state quintet to triplet
excited states transitions) and z (from a least squares t to the spin–
orbit split terms of the 5E ground state) and the NEVPT2 (B and C)
and NEVPT2 + SOC (z) results.
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It was pointed out in Section 3.1 that bonding anisotropy
reduces the symmetry from approximately C3v (for 2 and
Fe(CH3)2) to approximately C2v in the FeN2 cores of 1, 3, 4, 6, and
7. Values of the energy D(5A1–

5B1) – the splitting between the
upper and lower components of the 5E ground terms, were
computed with AOM parameters (see Table 6) assuming an
arbitrary but xed value of the angle q ¼ 15�. This energy
correlates directly with the term g(Qx

2 + Qy
2) (see eqn (5)) and

thus with the effect of vibronic pseudo Jahn–Teller coupling on
the magnetic anisotropy (Section 3.2). This can be seen in
Fig. 14, which shows that the energies of 5A1 and 5B1 increase
upon bending because the two states are being destabilized by
s, pc, and ps antibonding interactions, respectively. Thus, the
splitting D(5A1–

5B1) appears as a combination of the effects of s,
pc, and ps antibonding interactions. Distortions also lead to a
lowering of the orbital moments because of mixing of the 5A1(dz2
� |2,0>) state into the 5A1 dx2�y2 � |2,2>+|2,�2> state. In addi-
tion, s–d mixing further lowers 5A1(dz2) and contributes to the
reduction of the orbital angular momentum. Finally, at acute
values of the angle q, an avoided crossing leads to a switch from
a 5A1(dx2�y2) to a 5A1(dz2) electronic ground state. This switch
quenches the orbital angular momentum (Table 7).

The parameterization given by the AOMwith diagonal energy
terms described by s (for M(dz2)–X(pz)), in-plane (pc for M(dxz)–
X(px)), and out-of-plane (ps for M(dyz)–X(py)) antibonding
interactions between M and X, is only justied in complexes
with strictly linear (epc¼ eps¼ ep) or two-fold (C2v) symmetry for
each Fe–X fragment. This situation can change in complexes
with composite ligands, where, say, carbon atoms attached to a
given sp2-type N donor atom can affect its lone pair from being
optimally aligned for s-bonding with the metal. The physical
implications of such bent bonds (or “misdirected valence”) have
been discussed by Liehr in relation to the optical rotatory power
in tri- and digonal dihedral compounds.85,86 As judged by the
standard deviations in Table 6, the overall success of the stan-
dard LF model (where misdirected valence is neglected) with
AOM parameters es, eps, and epc is quite high. Yet, as expected
for complexes 5, 4, and the bent complex 6, all possessing Cs or
even lower (C1) Fe–X pseudosymmetries, standard deviations
(493, 464, and 794 cm�1, respectively) are larger than for the
152 | Chem. Sci., 2013, 4, 139–156
complexes with the more regular structures: FeC2 (C3v, s ¼ 68
cm�1) and, to a lesser extent, the FeN2 complexes 1, 3, and 7
(C2v, s ¼ 349, 344, and 189 cm�1, respectively). The extra lone
pair located in the Fe–O–R plane of the FeO2 complex 5 (see
Fig. 4) has the proper symmetry for both s and pc overlap.
Keeping to the linear O–Fe–O geometry, this is expected to
create an off-diagonal matrix element hdz2rVlone_pairrdxzi ¼ 2espc
and to affect the nominal values of es and epc. As has been
pointed out by Gerloch et al.,87,88 in the general case of a Fe–X
bond with pseudosymmetry C1, up to six AOM parameters for a
given ligand have to be introduced (extended AOM, diagonal es,
eps, epc and off-diagonal espc, espc, epcs).

While there is little hope in obtaining much insight from
such an over-parameterized model (the data base from optical
spectroscopy is too limited in order to unambiguously extract
the model parameters; see ref. 87 and 88 for attempts to do
this), it is worthwhile to reconsider the more complete ab initio
results in the light of this concept. Numerical data (see ESI†)
given by the 1 : 1mapping of the ab initioNEVPT2 data onto LFT
for complex 5 leads to the following conclusions:

(i) There is full support from ab initio theory for the expected
s–pmixing between the rddz2i and rddxzi orbitals. The energetic
effect of the C2v to the Cs symmetry lowering is calculated not to
be very large (espc ¼ 420 cm�1) but comparable to that of the
symmetry lowering from Cs to C1 (rddxzi–rddyzi, epcs ¼ 409
cm�1).

(ii) Bonding anisotropy implicated by a lowered actual
symmetry causes 5E(dx2�y2, dxy) in-state mixing (edpc ¼ 217
cm�1) and rst-order splitting (edc� eds¼ 138 cm�1), effects that
are ignored in conventional AOM modeling. Such mixings are
counterintuitive and must be electrostatic in origin.

(iii) The largest off-diagonal terms are calculated between
5E(dx2�y2, dxy) and 5A1(dz2) (esdc ¼ �1302 cm�1, esds ¼ �828
cm�1), but are ignored in the extended AOM. These terms lead
to a mixing of 5A1 into

5E(dx2�y2, dxy) and thus reduce the orbital
momenta (see above). However, the 5A1(dz2)–

5E(dx2�y2, dxy)
energy separation is relatively large (10 483 cm�1), which
somewhat lessens this effect.

While not being favorable for the single-molecule magnet
behavior of the considered complexes, spatial asymmetries
leading to matrix elements of the type hdz2rVlone_pairrdxzi ¼ 2espc
are responsible for chirality leading to natural circular
dichroism (NCD) in chelate complexes with highly-symmetric
MXn (n¼ 2–6) cores. The combination of this property with that
of a high-spin FeII center, providing coexistence of spatial
asymmetry (chirality leading to a parity break) and magnetiza-
tion (causing a break of time reversal symmetry) can lead to
optically active magnets (or magneto-chirality) and to magneto-
chiral dichroism with non-polarized light.89 As magnetic chiral
media are intrinsically magnetoelectric, electrical reading/
writing in the magnetic state is possible, a feature that is
currently being pursued in the rising eld of molecular multi-
ferroic materials. With a bistable ground magnetic state E and
A1 and A2 excited states, as found in complexes 1–7, a combi-
nation with chirality in properly selected enantiopure
derivatives seems a very promising direction for further
exploration.
This journal is ª The Royal Society of Chemistry 2013
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4 Conclusions

(1) CASSCF/NEVPT2 calculations of the electronic multiplets of
two-coordinate FeII complexes with C, N, and O donor ligands
have been used to analyze the bonding within complexes 1–7
and to trace the effects of the next-nearest atoms to the metal
center on the Fe-ligand bonds. Angular overlap model param-
eters deduced from ab initio data, along with DFT calculations
performed on linear Fe(CH3)2, Fe(NH2)2, and Fe(OH)2 model
complexes, demonstrate that the respective properties are
strongly affected by the supporting ligand scaffold (N(CSi) in 1,
C(Si)3 in 2, N(HC) in 3, 4, and 6, O(C) in 5, and N(C)2 in 7). Due to
these bonds, the approximate local Fe–X pseudosymmetry is
lowered from C3v for Fe–C(sp

2) to C2v for Fe–N(sp
2) to Cs for Fe–

O(sp), leaving one, two and three ligand lone pairs for bonding
to FeII, respectively. The bonding anisotropy, increasing in this
sequence, causes a splitting of the doubly degenerate ground
and excited state levels assumed respectively as 5D(dx2�y2, dxy)
and 5P(dxz, dyz) for linear FeX2 complexes.

(2) Spin orbit coupling, here accounted for by quasidegen-
erate perturbation theory (QDPT) in the basis of the non-rela-
tivistic CASSCF wavefunctions and diagonal NEVPT2
corrections to the CASSCF energies, leads to magnetic sublevels
of 5E parentage. Low symmetry splitting of the doubly degen-
erate E ground state magnetic sublevel pair, caused by the
bonding anisotropy, is strongly suppressed by SOC, but shows
up to the full extent in the second doubly degenerate excited
magnetic sublevel pair. Using static geometries taken from the
crystal structures, low-temperature (T ¼ 1.8–5 K) isothermal
magnetization data and magnetic susceptibilities (for 1 and 2)
could be reasonably well reproduced.

(3) A dynamic 5E53 vibronic coupling model of the Renner–
Teller type has been employed to explain why the experimen-
tally determined magnetization and susceptibility data for
complexes 3–6 are systematically lower than the theoretically
predicted results, assuming only static geometric distortions.
The model incorporates three model parameters (g, j, and h-u3,
corresponding to the Renner–Teller vibronic coupling constant,
anharmonicity, and harmonic energy parameters, respectively)
that were adjusted to the adiabatic ground state potential of a
distorted Fe(CH3)2 model complex. Vibronic reductions of
orbital contributions to the net magnetic moment exceed by far
the orbital moment quenching induced by covalency. Following
this model, it was possible to t the low (T¼ 2 K) and room (T¼
300 K) temperature magnetic susceptibility data for complexes
2–6 in terms of a single parameter f, the vibronic coupling
strength, which can vary between 0 (no vibronic coupling) and 1
(strong vibronic coupling). The best t values for f fall into a
narrow range at 0.142 � 0.015. The given range of f nearly
coincides with borderline of a discontinuous change from weak
(f < 0.1) to strongly (f > 0.1) coupled electronic and nuclear
motions, where vibronic coupling is being quenched by SOC (f <
0.1) or vice versa (f > 0.1). It is conceivable that in a solid, large
amplitude movements will readily drive the system from a
dynamically averaged into a static distorted nuclear congura-
tion. The very different magnetic behaviors reported for
complexes 1–2 and 3–6 are a clear manifestation of such
This journal is ª The Royal Society of Chemistry 2013
behavior, and should be the subject of more detailed structural,
magnetic, and spectroscopic studies.

(4) A general method allowing a 1 : 1 mapping of the ligand
eld matrix, as deduced from ab initio CASSCF + NEVPT2
calculations, onto corresponding AOM energy expressions was
used to obtain values of the antibonding energies of s (es), the
in- (epc) and out-of- (eps) plane p-type. The parameters show: (i)
a large reduction of es due to 3dz2–4s mixing (hybridization)
typical for linear X–M–X transition metal complexes, (ii) p-
bonding anisotropy reected in eps > epc for the Fe–N(sp2) and
Fe–O(sp) type complexes, and (iii) framework hyperconjugative
effects manifested in values of ep assumed otherwise to be zero
(ep for C(sp3) and epc for N(sp2)). In the same context, ligand
eld matrix elements neglected in common AOM parameteri-
zation schemes, but accounted for by its extended versions
(such as s–p mixings and misdirected valence) could be traced
back and veried. Other couplings (dx2�y2–dz2, dxy–dz2, and dxy–
dx2�y2), which, due to the high level of over-parameterization
have not been discussed before, emerged from our analysis.

(5) Based on the theoretical analysis, the following guide-
lines for generating new single-molecule magnets with
improved magnetic anisotropies and relaxation times can be
formulated:

(i) enhancement of the spin–orbit coupling and concomitant
suppression of the vibronic coupling is predicted to improve the
anisotropy barrier Ueff (see Fig. 8). Both features can be met by
replacing the C, N, or O donor atoms with their heavier
analogues, such as Si, P, or S. Indeed, some FeS2 moieties have
already been reported.90 Ligand spin–orbit coupling, increasing
in this direction may add to the metal one, thus compensating
for the enhanced metal–ligand covalence, which tends to act in
the opposite direction (relativistic nephelauxetic effect). Such
an increase in molecular magnetic anisotropy as a result of the
coordination of increasingly heavier ligand atoms has been
demonstrated recently in octahedral complexes of CrIII.91

Additionally, vibronic coupling, which decreases with
increasing metal–ligand covalency, is expected to support a
larger Ueff. A nice manifestation of such an effect is a recently
reported CoS4 single-molecule magnet, the rst example of a
transition metal complex exhibiting slow magnetic relaxation
under zero applied dc magnetic eld.92

(ii) Metal–ligand bonds with C3v and C2v local pseudo-
symmetries, enforced by the next-nearest metal neighbors
(C(sp3) and N(sp2)), are preferable to lower symmetry ones
(O(sp2)), which create large matrix elements between the
ground state MJ sublevels.

(iii) Avoiding secondary metal–ligand interactions through
the use of sterically encumbering ligands with aliphatic (1, 2)
rather than aromatic substituents (3–5) has a favorable effect on
the relaxation time. Along the same line, bulky ligands of the
former type tend to support linear FeX2 cores and thus oppose
in an indirect way unfavorable vibronic coupling.

(iv) Suppression of dipolar spin–spin interactions between
magnetic centers in the solid will increase the relaxation time
for the direct process. It is this kind of interaction which shows
the expected trend of relaxation times (see Fig. 13) across the
series. Thus decoupling of the molecule from the lattice is an
Chem. Sci., 2013, 4, 139–156 | 153
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important goal. Aside from the usual approaches used to ach-
ieve this (e.g., dilution of the single-molecule magnets by
substitution in a diamagnetic isomorphic compound or in
frozen solution), stabilization of the molecules on a metal
(usually gold) surface provides a modern way of approaching
this. One possibility of doing this is given by using appropriately
chosen spacer molecules that can “wire” a single-molecule
magnet to a gold surface.1 Another method, involving vapor
deposition, should be facile for certain mononuclear transition
metal complexes that are neutral and can sublime. For example,
complex 2 is easily sublimable.93 In the context of the FeX2

single-molecule magnets, a possible target would be an –

AuS3C–C^C–Fe–C^C–CS3Au – structure. Unfavorable vibronic
coupling which tends to stabilize bent structures will be sup-
pressed within the constraints given above.

(6) The large magnetic anisotropy due to unquenched rst
order orbital momentum in the 5E ground states of the
considered FeX2 complexes leads to large anisotropy barriers.
However, quantum tunneling of the magnetization is particu-
larly efficient owing to the small value of S ¼ 2 and the low-
symmetry perturbations of the kind discussed in Sections 3.2.3
and 3.3. Thus, the search for better single-molecule magnets
that stay magnetized at elevated temperatures requires a
combination of a large Ueff and a small quantum tunneling rate.
This goal is only partly (due to intrinsic transversal magnetic
elds stemming from dipole–dipole interactions which cannot
be avoided in a solid) achieved by choosing Kramers rather than
non-Kramers Fe(II) (S ¼ 2) ions, as was shown in the recently
reported [Co(SPh)4]

2� (S ¼ 3/2) complex.92 The condition of
larger Ueff (large/small spin–orbit/vibronic coupling) and a
small quantum tunneling of the magnetization (large total
moments MJ) seems to be ideally met in complexes of rare
earths such as phthalocyanine (pc) double decker complexes,
e.g. (pc)2Tb

III.94 A similar possibility for complexes of 3d metals
employs low-coordinate Fe(II) (introducing large Ueff) ferro-
magnetically coupled with several MnII (S ¼ 5/2, introducing a
large spin). Such a synthetic strategy has yet to be explored.
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