ChemComm

COMMUNICATION

Cite this: Chem. Commun., 2016, 52, 8251

Received 23rd March 2016, Accepted 3rd June 2016

DOI: 10.1039/c6cc02494g

www.rsc.org/chemcomm

Adsorption of two gas molecules at a single metal site in a metal-organic framework[†]

Tomče Runčevski,^{ab} Matthew T. Kapelewski,^{ab} Rodolfo M. Torres-Gavosto,^{ab} Jacob D. Tarver,^{cd} Craig M. Brown^{ce} and Jeffrey R. Long*^{abf}

One strategy to markedly increase the gas storage capacity of metalorganic frameworks is to introduce coordinatively-unsaturated metal centers capable of binding multiple gas molecules. Herein, we provide an initial demonstration that a single metal site within a framework can support the terminal coordination of two gas molecules—specifically hydrogen, methane, or carbon dioxide.

Metal-organic frameworks have been explored extensively for possible applications in the storage of hydrogen,¹ methane,² and other gases³ and possess the inherent advantage that lower pressures and higher temperatures can be utilized than currently feasible with common compression or cryogenic storage. Notably, the geometry and size of the framework pores, the types of internal surfaces, and the nature of the resident binding sites all heavily influence gas adsorption properties. In particular, an important strategy to increase storage capacities and meet the U.S. Department of Energy passenger vehicle system targets for storing H₂ at 40 g L⁻¹ and 5.5 wt% at pressures up to 100 bar and ambient temperatures⁴ is to increase the density of strong binding sites within the pores of a given framework.⁵

Typically, the strongest binding sites for gas molecules are coordinatively-unsaturated metal centers, $^{1c,e,2a-c,5-7}$ which can present binding enthalpies as high as -21.6 kJ mol⁻¹ for methane

- ^fDepartment of Chemical and Biomolecular Engineering,
- University of California Berkeley, Berkeley, California 94720, USA

in Ni₂(dobdc) (dobdc⁴⁻ = 2,5-dioxido-1,4-benzene-dicarboxylate)^{2e} and -13.7 kJ mol⁻¹ for hydrogen in Ni₂(*m*-dobdc) (*m*-dobdc⁴⁻ = 4,6-dioxido-1,3-benzenedicarboxylate).^{6g} Importantly, although these materials also boast a high density of open metal coordination sites, each metal is only capable of adsorbing a single gas molecule, thus limiting the storage capacity. To date, the terminal coordination of more than one gas molecule at a single metal site has not been rigorously demonstrated within a metal–organic framework. While the design of new frameworks with a high concentration of low-coordinate metal centers presents an important and ongoing research challenge, certain existing structure types may present an opportunity for demonstrating the viability of this strategy.

It was recently shown that the thiolated analogue of the dobdc^{4–} linker, 2,5-disulfido-1,4-benzenedicarboxylate (dsbdc^{4–}), combines with Mn^{2+} to form the DMF-solvated framework Mn_2 (dsbdc)-(DMF)₂·0.2DMF.⁸ In this structure, two distinct octahedral metal centers alternate down helical chains running along the crystallographic *c*-axis, one with six ligating atoms arising from dsbdc^{4–} linkers and the other with just four. Importantly, two terminal DMF molecules bound in a *cis* configuration complete the coordination sphere of the latter type of Mn^{2+} site. Herein, we demonstrate a means of fully activating this material while retaining a high degree of crystallinity. As probed by *in situ* powder diffraction measurements, the resulting four-coordinate metal centers can indeed each adsorb two gas molecules.

After synthesis according to the literature procedure,⁸ exchange of the DMF in $Mn_2(dsbdc)(DMF)_2 \cdot 0.2DMF$ with methanol and subsequent heating at 423 K under dynamic vacuum yielded the fully desolvated material, $Mn_2(dsbdc)$. This compound exhibits a Langmuir surface area of 1610 m² g⁻¹ based upon N₂ adsorption at 77 K (see the ESI†); purity and complete activation were confirmed by infrared spectroscopy and elemental analysis (see the ESI†). Often, large single crystals of metal–organic frameworks do not survive activation conditions and instead form a microcrystalline powder. Thus, considering that the activation of $Mn_2(dsbdc)(DMF)_2 \cdot 0.2DMF$ could alter the original framework topology, we sought to verify the structure of activated Mn_2 -(dsbdc) *ab initio* from synchrotron X-ray powder diffraction data.

^a Department of Chemistry, University of California Berkeley, Berkeley, California 94720, USA. E-mail: jrlong@berkeley.edu

^b Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

^c Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA

^d National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, USA

^e Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, USA

[†] Electronic supplementary information (ESI) available: Gas adsorption, Langmuir fitting, elemental analysis, infrared spectroscopy, X-ray powder diffraction, neutron powder diffraction, inelastic neutron scattering spectroscopy. See DOI: 10.1039/c6cc02494g

Fig. 1 (a) Rietveld plot for the crystal structure of Mn₂(dsbdc). The scattered X-ray intensity is represented by blue dots, the best fit with a red line, the difference curve with a gray line, and the Bragg positions with vertical bars. The high-angle portion of the pattern is enlarged in the inset for clarity. (b) Crystal structure of Mn₂(dsbdc) showing the one-dimensional hexagonal pores along the crystallographic *c*-axis. (c) A portion of a single helix of alternating six-coordinate and four-coordinate metal nodes, with blue-green, yellow, red, gray, and white spheres representing Mn, S, O, C, and H atoms, respectively.

The corresponding Rietveld plot is presented in Fig. 1a (experimental details can be found in the ESI[†]).

Crystallographic analysis confirmed the complete desolvation of the framework and formation of Mn₂(dsbdc) with a crystal packing isostructural to the solvated framework. The structure consists of infinite Mn²⁺ helices running along the crystallographic *c*-axis, and these chains are connected by dsbdc4- linkers to form a honeycomb structure (Fig. 1b) containing one-dimensional channels with a van der Waals diameter of ~ 16 Å. In the asymmetric unit, there are two crystallographically independent Mn²⁺ ions bridged by the thiophenoxide and carboxylate groups of the anionic dsbdc⁴⁻ linkers (Fig. 1c). One of the Mn²⁺ ions is six-coordinate and adopts an octahedral geometry with four oxygen atoms at the equatorial positions (Mn-O bond lengths of 2.19(2) and 2.27(2) Å) and two axial sulfur atoms (Mn-S bond lengths of 2.575(7) Å). The second Mn²⁺ ion is four-coordinate, exhibiting a see-saw geometry, with the two opposing coordination sites occupied by sulfur atoms (Mn-S bond lengths of 2.405(7) Å) and the two intervening sites occupied by oxygen atoms (Mn-O bond lengths of 2.07(1) Å). Relative to the corresponding octahedral site in the DMF-solvated crystal structure, this Mn²⁺ ion sits slightly displaced toward the remaining cis equatorial oxygen atoms, resulting in a relatively bent S-Mn-S angle of 159.3(2)° (compared to the S-Mn-S angle of 176.0° in Mn₂(dsbdc)(DMF)₂·0.2DMF).⁸ Regardless, its geometry appears to leave ample open space in which two gas molecules could approach the positive charge density of the Mn²⁺ ion.

Fig. 2 (a) Experimental H₂ isotherms for Mn₂(dsbdc) at 77 K (blue circles) and 87 K (red squares). Blue and red lines represent dual-site Langmuir isotherm fits. (b) Isosteric heat of H₂ adsorption in Mn₂(dsbdc), as calculated using the Clausius–Clapeyron relation.

To evaluate the H₂ adsorption properties of Mn₂(dsbdc), isotherms were measured at 77 and 87 K (Fig. 2a). The isotherms do not rise steeply compared to a number of other metal-organic frameworks possessing exposed metal cation sites, suggesting that the Mn²⁺ ions within this structure do not have an unusually strong affinity for H₂.^{1,4} Each isotherm was independently fit using a dual-site Langmuir model. By interpolating data points from the resulting fits at constant loadings, the isosteric heat of H₂ adsorption in Mn₂(dsbdc) could be determined for the various loadings (Fig. 2b). Indeed, as expected from the isotherm shapes, only a very modest initial binding enthalpy of -5.6 kJ mol⁻¹ is observed, indicating that the Mn^{2+} ions in the S_2O_2 see-saw coordination geometry of Mn_2 (dsbdc) only weakly polarize the H_2 molecules. We note that there is precedent for weaker interactions with Mn²⁺ as compared with other metals. For comparison, the isosteric heat of H₂ adsorption in Mn₂(dobdc) is -8.8 kJ mol^{-1,6g} which represents the weakest binding enthalpy of the M2(dobdc) series, while that within $Ni_2(m-dobdc)$ is -12.3 kJ mol^{-1.6g} The ability of the large Mn²⁺ to only weakly polarize H₂ coupled with the lack of space available around the Mn²⁺ center due to the larger radius of sulfido donor atoms relative to oxido donor atoms lead to this relatively weak binding enthalpy.

Despite this low adsorption enthalpy, the anticipated binding of two hydrogen molecules at a single metal site is readily apparent from neutron powder diffraction experiments carried out on $Mn_2(dsbdc)$ for D_2 loadings of 0.7 and 1.4 per four-coordinate metal ion (Rietveld plots are presented in Fig. S5 and S6 in the ESI[†]). Fig. 3 presents a portion of the crystal structure surrounding

Fig. 3 Top: A portion of the crystal structure of Mn₂(dsbdc) presented around the four-coordinate Mn²⁺ center in (a) activated, (b) 0.7 D₂ dosed, (c) 0.4 CD₄ dosed, and (d) 0.13 CO₂ dosed samples (per four-coordinate metal ion). Blue-green, yellow, red, gray, and small white spheres represent Mn, S, O, C, and D or H atoms, respectively. Large white spheres in (b) represent the centroids of D₂ molecules. Selected interatomic distances and angles: (a) Mn-O = 2.07(1) Å; Mn-S = 2.405(7) Å; \angle S-Mn-S = 159.3(2)°; (b) Mn-D₂ = 3.40(4) Å; Mn-O = 2.19(5) Å; Mn-S = 2.34(6) Å; \angle S-Mn-S = 164(4)°; (c) Mn···C(CD₄) = 3.66(1) Å; Mn-D(CD₄) = 2.72(3) Å; (d) Mn-O(CO₂) = 3.55(10) Å; Mn···C(CO₂) = 3.52(10) Å. For refinement of (c) and (d) the framework parameters were kept fixed.

the four-coordinate metal center before (Fig. 3a) and after (Fig. 3b) dosing with 0.7 equivalents of D_2 . The interaction of two D_2 molecules with a single Mn^{2+} ion is clearly observed for this loading. The Mn–D₂ separations of 3.40(4) and 3.07(3) Å for D₂ loadings of 0.7 and 1.4, respectively, again indicate relatively weak interactions between the gas molecules and the metal ion. For comparison, the very strongly polarizing five-coordinate Co^{2+} ions in $Co_2(m-dobdc)$ result in a $Co-D_2$ separation of just 2.23(5) Å.^{6e} Although association with the metal center represents the primary binding site, there is also a secondary (lower-occupancy) binding site that could be identified within the structure of Mn₂(dsbdc) 0.7D₂, as well as a tertiary binding site in $Mn_2(dsbdc)$ ·1.4D₂. The Mn^{2+} -H₂ association is further supported by the results of inelastic neutron scattering spectroscopy (INS) experiments performed upon dosing Mn₂(dsbdc) with H₂ (see the ESI[†] for details). The INS data indicate an association of the H_2 with the Mn^{2+} through a splitting and shifting of the quantum rotational levels beyond that experienced by H_2 in the bulk or weakly physisorbed H_2 .

Gratifyingly, we were also able to solve CD_4 - and CO_2 -dosed structures of $Mn_2(dsbdc)$ using neutron and X-ray powder diffraction, respectively (experimental details and Rietveld plots are given in the ESI[†]). This demonstrated that a variety of different gases can interact with the exposed four-coordinate metal sites within the framework. Fig. 3c presents a portion of the crystal structure showing binding of two CD_4 molecules at a single metal center, with corresponding Mn–D and Mn···C distances of 2.72(3) and 3.40(1) Å, respectively. Fig. 3d presents the same part of the structure after adsorption of two CO_2 molecules, with Mn–O and Mn–C distances of 3.55(10) and 3.52(10) Å, respectively. We note that the separations between the metal center and the adsorbed gas molecules are somewhat longer than observed within frameworks featuring more polarizing metal cation sites.^{6b,d},*f*-h,⁷

In conclusion, we have demonstrated that coordinatively unsaturated Mn^{2+} centers in the metal-organic framework $Mn_2(dsbdc)$ can adsorb two terminally bound gas molecules simultaneously. While the binding strength of H_2 in this framework is modest compared to materials such as $Ni_2(m$ -dobdc),^{6g} this result represents an important proof of concept that we hope will inform the further design of materials with drastically improved gas storage properties. For example, replacing the four-coordinate Mn^{2+} ions within the structure of $Mn_2(dsbdc)$ with larger metal cations, such as Ca^{2+} , could further expose the metal ion charge density, leading to stronger binding of H_2 and perhaps even coordination of three H_2 molecules.

This research was supported through the Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office (under grant DE-AC02-05CH11231). X-ray diffraction measurements were performed at Beamline 17-BM, Advanced Photon Source, Argonne National Laboratory, Proposal ID: 46636. M. T. K. and R. M. T.-G. gratefully acknowledge support through the NSF Graduate Research Fellowship Program. J. D. T. gratefully acknowledges research support from the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, under Contract No. DE-AC36-08GO28308. We also thank Dr K. R. Meihaus for providing editorial assistance.

Notes and references

- (a) N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O'Keeffe and O. M. Yaghi, *Science*, 2003, **300**, 1127; (b) J. L. C. Rowsell and O. M. Yaghi, *Angew. Chem., Int. Ed.*, 2005, **44**, 4670; (c) M. Dincä, A. Dailly, Y. Liu, C. M. Brown, D. A. Neumann and J. R. Long, *J. Am. Chem. Soc.*, 2006, **128**, 16876; (d) D. J. Collins and H.-C. Zhou, *J. Mater. Chem.*, 2007, **17**, 3154; (e) L. J. Murray, M. Dincä and J. R. Long, *Chem. Soc. Rev.*, 2009, **38**, 1294; (f) Z. Li, G. Zhu, G. Lu, S. Qiu and X. Yao, *J. Am. Chem. Soc.*, 2010, **132**, 1490; (g) M. P. Suh, H. J. Park, T. K. Prasad and D.-W. Lim, *Chem. Rev.*, 2012, **112**, 782.
- 2 (a) H. Wu, W. Zhou and T. Yildirim, J. Am. Chem. Soc., 2009, 131, 4995; (b) Z. Guo, H. Wu, G. Srinivas, Y. Zhou, S. Xiang, Z. Chen, Y. Yang, W. Zhou, M. O'Keeffe and B. Chen, Angew. Chem., Int. Ed., 2011, 50, 3178; (c) T. A. Makal, J.-R. Li, W. Lu and H.-C. Zhou, Chem. Soc. Rev., 2012, 41, 7761; (d) Y. Peng, V. Krungleviciute, I. Eryazici, J. T. Hupp, O. K. Farha and T. Yildirim, J. Am. Chem. Soc., 2013, 135, 11887; (e) J. A. Mason, M. Veenstra and J. R. Long, Chem. Sci., 2014, 5, 32; (f) Y. He, W. Zhou, G. Qian and B. Chen, Chem. Soc. Rev., 2014, 43, 5657.
- 3 (a) D. Tanaka, M. Higuchi, S. Horike, R. Matsuda, Y. Kinoshita, N. Yanai and S. Kitagawa, *Chem. Asian J.*, 2008, 3, 1343; (b) J.-R. Li, R. J. Kuppler and H.-C. Zhou, *Chem. Soc. Rev.*, 2009, 38, 1477; (c) J. B. DeCoste, M. H. Weston, P. E. Fuller, T. M. Tovar, G. W. Peterson, M. D. LeVan and O. K. Farha, *Angew. Chem., Int. Ed.*, 2014, 53, 14092; (d) J. Liu, D. M. Strachan and P. K. Thallapally, *Chem. Commun.*, 2014, 50, 466; (e) E. D. Bloch, W. L. Queen, S. Chavan,

P. S. Wheatley, J. M. Zadrozny, R. Morris, C. M. Brown, C. Lamberti, S. Bordiga and J. R. Long, *J. Am. Chem. Soc.*, 2015, **137**, 3466.

- 4 U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, Technical System Targets: Onboard Hydrogen Storage for Light-Duty Fuel Cell Vehicles, http://energy.gov/sites/prod/files/2015/01/f19/ fcto_myrdd_table_onboard_h2_storage_systems_doe_targets_ldv.pdf.
- 5 E. Tsivion, J. R. Long and M. Head-Gordon, *J. Am. Chem. Soc.*, 2014, **136**, 17827.
- 6 (a) S. S.-Y. Chui, S. M.-F. Lo, J. P.-H. Charmant, A. G. Orpen and I. D. Williams, Science, 1999, 283, 1148; (b) M. Dincă and J. R. Long, Angew. Chem., Int. Ed., 2008, 47, 6766; (c) P. D. C. Dietzel, R. E. Johnsen, R. Blom and H. Fjellvåg, Chem. – Eur. J., 2008, 14, 2389; (d) K. Sumida, C. M. Brown, Z. R. Herm, S. Chavan, S. Bordiga and J. R. Long, Chem. Commun., 2011, 47, 1157; (e) P. Chowdhury, S. Mekala, F. Dreisbach and S. Gumma, Microporous Mesoporous Mater., 2012, 152, 246; (f) K. Sumida, D. Stück, L. Mino, J.-D. Chai, E. D. Bloch, O. Zavorotynska, L. J. Murray, M. Dincă, S. Chavan, S. Bordiga, M. Head-Gordon and J. R. Long, J. Am. Chem. Soc., 2013, 135, 1083;

(g) M. T. Kapelewski, S. J. Geier, M. R. Hudson, D. Stück, J. A. Mason, J. N. Nelson, D. J. Xiao, Z. Hulvey, E. Gilmour, S. A. FitzGerald, M. Head-Gordon, C. M. Brown and J. R. Long, *J. Am. Chem. Soc.*, 2014, **136**, 12119; (*h*) D. Gygi, E. D. Bloch, J. A. Mason, M. R. Hudson, M. I. Gonzalez, R. L. Siegelman, T. A. Darwish, W. L. Queen, C. M. Brown and J. R. Long, *Chem. Mater.*, 2016, **28**, 1128.

- 7 (a) K. Lee, W. C. Isley, A. Dzubak, P. Verma, S. J. Stoneburner, E. D. Bloch, D. A. Reed, M. R. Hudson, L.-C. Lin, J. Kim, C. M. Brown, J. R. Long, J. Neaton, B. Smit, C. J. Cramer, D. G. Truhlar and L. Gagliardi, *J. Am. Chem. Soc.*, 2014, 136, 698; (b) W. L. Queen, M. R. Hudson, E. D. Bloch, J. A. Mason, M. I. Gonzalez, J. S. Lee, D. Gygi, J. D. Howe, K. Lee, T. A. Darwish, M. James, V. K. Peterson, S. J. Teat, B. Smit, J. B. Neaton, J. R. Long and C. M. Brown, *Chem. Sci.*, 2014, 5, 4569; (c) Z. Hulvey, B. Vlaisavljevich, J. A. Mason, E. Tsivion, T. P. Dougherty, E. D. Bloch, M. Head-Gordon, D. Smit, J. R. Long and C. M. Brown, *J. Am. Chem. Soc.*, 2015, 137, 10816.
- 8 L. Sun, T. Miyakai, S. Seki and M. Dincă, J. Am. Chem. Soc., 2013, 135, 8185.