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In the past decade, an increasing number of molecular clusters
have been shown to exhibit magnetic bistability. These

species, called single-molecule magnets (SMMs), have
gained considerable attention because they retain informa-
tion in a single molecule rather than in a magnetic particle or
array of particles[1] and can potentially be used in quantum
computers.[2] Furthermore, understanding the magnetic prop-
erties of these molecules is important to help bridge the gap
between the quantum and classical understanding of magnet-
ism.[3] The most thoroughly studied SMMs are [Mn12O12(CH3-
CO2)16(H2O)4] and its derivatives,[4] but there are a number of
other clusters containing FeIII,[5] VIII,[6] CoII,[7] or NiII [8] ions
that have been reported to be SMMs. These species are all
homometallic systems in which magnetic exchange interac-
tions occur through bridging oxygen atoms.

Important to the future of the field of SMMs is the
development of new synthetic schemes that can yield clusters
with a large spin and/or anisotropy. Metal–cyanide cluster
systems offer an advantage for achieving such control,
through the substitution of various metal ions into a given
structure type. Moreover, the nature of the magnetic
exchange coupling between different metal ions in the
resulting cluster is readily predicted.[9] One approach to
synthesizing high-nuclearity metal–cyanide clusters employs
multidentate capping ligands to inhibit growth of an extended
solid and direct the structure of the product. Many clusters
have been prepared by this method,[10–12] including the face-
centered-cubic species [(Me3tacn)8Cr8Ni6(CN)24]

12+ (Me3tacn=
N,N’,N’’-trimethyl-1,4,7-triazacyclononane)[11b] and [(tach)8-
(H2O)6Cu6Co8(CN)24�THF]12+ (tach= 1,3,5-triaminocyclo-
hexane).[11d] However, as far as we know, there are only a
very few cyanide-bridged SMMs,[13] and none of the estab-
lished SMMs exhibit cubic symmetry.

In an effort to extend this chemistry, we have chosen to
employ the precursor compound (Bu4N)[(Tp)Fe(CN)3] (1;
Tp�= hydrotris(pyrazolyl)borate), featuring a low-spin FeIII

center octahedrally coordinated by three CN� groups and the
tridentate ligand Tp� . This monoanionic complex has also
been utilized by Julve and co-workers as the tetraphenyl-
phosphonium salt.[14] Tp� is a classical scorpionate ligand with
a C3 axis, and in contrast to neutral capping ligands, such as
Me3tacn and tach, is negatively charged which should help
alleviate the build-up of excessive positive charge in clusters.
Thus, [(Tp)Fe(CN)3]

� is anticipated to direct the formation of
new cyanide-bridged compounds with interesting structures
and magnetic properties. Indeed, we have recently reported
its use in the preparation of [(Tp)2Fe2(CN)6Cu(CH3OH)·
2CH3OH]n, a single-chain magnet with a blocking temper-
ature of approximately 6 K.[15] Herein, we disclose its use in
the synthesis of [(Tp)8(H2O)6CuII

6FeIII
8(CN)24]

4+, a face-
centered-cubic cluster exhibiting SMM-type behavior.

The compound [(Tp)8(H2O)6Cu6Fe8(CN)24](ClO4)4·
12H2O·2Et2O (2) crystallizes in space group Immm,[16] with
the well-isolated [(Tp)8(H2O)6Cu6Fe8(CN)24]

4+ molecules
residing on special positions of mmm site symmetry. As
shown in Figure 1, the clusters adopt a face-centered-cubic
geometry, in which eight Tp�-capped FeIII ions are arranged in
a cube and linked through cyanide to six CuII ions located just
above the center of each cube face. Here, each octahedral
[(Tp)Fe(CN)3]

� unit uses the three cyanide groups to connect
with three CuII ions, which are further ligated by water to give
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a square pyramidal {Cu(NC)4(H2O)} coordination sphere.
The Fe�C bond lengths (1.879(7)–1.937(10) A) are in good
agreement with those observed previously in related com-
pounds.[14, 15] The Cu�N bonds range from 1.955(6) to
1.972(5) A, and the Cu�O bonds vary from 2.108(9) to
2.224(10) A. The O-Cu-N bond angles are 92.7(2)–99.6(2)8.
All of the cyanide bridges deviate slightly from strict linearity,
as reflected in the Fe-C-N and Cu-N-C angles, which are
distributed within the range 171.3(6)–177.6(6)8. The C�N
stretching region in the IR spectrum of 2 is consistent with the
presence of only bridging cyanide ligands (a peak of medium
intensity at 2176 cm�1) and the high symmetry of the
structure. In all, the cluster closely approaches cubic (Oh)
symmetry, with Fe···Fe cube edge distances in the range
6.827–6.938 A and crystallographically imposed Fe···Fe···Fe
angles of 908.

Importantly, the Cu6Fe8 cluster represents the first
structurally characterized example of a face-centered-cubic
cluster in which both metal sites are occupied by para-
magnetic ions. Magnetic measurements were therefore per-

formed on a sample of pulverized single crystals of 2 in the
temperature range of 1.8–300 K. The variation of cMT with
temperature is plotted in Figure 2. At room temperature its
value is 5.77 emuKmol�1, somewhat above the spin-only

value of 5.25 emuKmol�1 expected for eight low-spin FeIII

(S= 1/2) and six CuII (S= 1/2) ions in the absence of any
exchange coupling. With decreasing temperature, cMT
increases, reaching a maximum of 27.94 emuKmol�1 at
approximately 5 K, after which point it decreases to
23.57 emuKmol�1 at 1.8 K. This magnetic behavior is indica-
tive of the expected ferromagnetic interactions between the
orthogonal spin orbitals of the FeIII and CuII ions,[9] resulting
in an S= 7 ground state. This conclusion is confirmed by the
field dependence of the magnetization of 2 at 1.8 K, which
saturates at a value of MS= 13.78 NmB (see the Supporting
Information). The sudden decrease in cMT below 5 K is
attributed to the presence of zero-field splitting, the effects of
which are also discernible in the magnetization data shown in
Figure 3. The cMT data above 5 K were simulated employing

Figure 1. Structure of the face-centered-cubic cationic cluster in 2.
Top: repeat unit, thermal ellipsoids are set at 50% probability. Bottom:
red Fe, turquoise Cu, orange B, gray C, blue N, dark red O; hydrogen
atoms have been omitted for clarity. Selected bond lengths [J] and
angles [8]: Fe1-C1 1.879(7), Fe1-C2 1.925(7), Fe1-C3 1.937(10), Cu1-N2
1.955(6), Cu2-N3 1.971(6), Cu3-N1 1.972(5), Cu1-O1 2.146(9), Cu2-O2
2.224(10), Cu3-O3 2.108(9); Fe1-C1-N1 173.6(6), Fe1-C2-N2 174.2(6),
Fe1-C3-N3 174.6(7), Cu1-N2-C2 177.6(6), Cu2-N3-C3 171.3(6), Cu3-
N1-C1 172.6(6), O1-Cu1-N2 99.59(17), O2-Cu2-N3 92.74(17), O3-Cu3-
N1 97.68(15).

Figure 2. Temperature dependence of cMT for compound 2, as mea-
sured in an applied DC field of 2000 G. The solid line corresponds to a
simulation of the data with J=15 cm�1, g=2.00, and temperature-
independent paramagnetism (TIP)=0.00070 emumol�1.

Figure 3. Plot of reduced magnetization, M/NmB (N is Avogadro’s
number and mB is Bohr magneton) versus H/T for 2. Data were mea-
sured in the 1.8–10 K range and at seven magnetic fields: (M ) 10.0,
(+) 20.0, (~) 30.0, (!) 40.0, (^) 50.0, (*) 60.0, and (&) 70.0 kG.
The solid lines resulted from least-squares fitting of the data in the
1.8–10 K range; see text for fitting parameters.
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MAGPAK[17] and an exchange Hamiltonian of the form given
in Equation (1).

ĤH ¼ �2 J½ŜSFe1 � ðŜSCu1 þ ŜSCu2 þ ŜSCu3Þ þ ŜSFe2 � ðŜSCu1 þ ŜSCu3 þ ŜSCu4Þþ
ŜSFe3 � ðŜSCu1 þ ŜSCu4 þ ŜSCu5Þ þ ŜSFe4 � ðŜSCu1 þ ŜSCu2 þ ŜSCu5Þþ
ŜSFe5 � ðŜSCu6 þ ŜSCu2 þ ŜSCu3Þ þ ŜSFe6 � ðŜSCu6 þ ŜSCu3 þ ŜSCu4Þþ
ŜSFe7 � ðŜSCu6 þ ŜSCu4 þ ŜSCu5Þ þ ŜSFe8 � ðŜSCu6 þ ŜSCu2 þ ŜSCu5Þ


ð1Þ

The best simulation was obtained with J=++ 15 cm�1,
which indicates significantly stronger coupling than previ-
ously observed for complexes containing more bent FeIII-CN-
CuII bridges.[18]

To assess the zero-field splitting associated with the S= 7
ground state, magnetization data were collected on com-
pound 2 at a variety of fields in the temperature range 1.8–
10 K (see Figure 3). The seven isofield data sets were fitted
using ANISOFIT[11c] to give zero-field splitting parameters of
D=�0.16 cm�1 and E= 0.0055 cm�1 with g= 1.93. Thus,
despite the near cubic symmetry of the cluster, the presence
of orbitally degenerate low-spin FeIII centers enables the
development of significant axial magnetic anisotropy. Indeed,
if the sign and magnitude of D obtained from the fit are
correct, then the Cu6Fe8 cluster should behave as an SMM
with a spin reversal barrier of U= S2 jD j= 7.8 cm�1.

One of the defining characteristics of an SMM is the
observation of a frequency-dependent out-of-phase AC
magnetic susceptibility (cM’’) signal. To determine whether
the slow magnetization relaxation behavior occurs in 2, AC
magnetic measurements were performed in the temperature
range of 1.8–6 K (Figure 4). Although no maximum was

observed down to 1.8 K, frequency-dependent cM’’ signals
were observed below 3 K, which indicates the superparamag-
net-like slow relaxation of an SMM. The results are similar to
those observed for [(tmphen)Mn5(CN)12] (tmphen= 3,4,7,8-
tetramethyl-1,10-phenanthroline),[13b] and place an upper
bound of 20 cm�1 (assuming an attempt frequency of 1/t0<

1010 Hz) on the effective spin-reversal barrier for the Cu6Fe8

cluster.
In summary, the use of Tp� as a capping ligand has

permitted isolation of a face-centered-cubic cluster, with a

well-isolated S= 7 ground state. Despite its cubic symmetry,
the molecule possesses substantial axial magnetic anisotropy
(D=�0.16 cm�1), which leads to single-molecule-magnet
behavior.

Experimental Section
1: Prepared by a modified literature method.[14] 2 : Solid
Cu(ClO4)2·6H2O (37 mg, 0.13 mmol) was added to a solution of
(Bu4N)[(Tp)Fe(CN)3] (59 mg, 0.10 mmol) in acetonitrile and ethanol
(5 mL; mole ratio= 2:1). The solution was filtered. Brown block-
shaped crystals of 2 were obtained in 85% yield by diffusing diethyl
ether vapor into the filtrate. IR: n= 2176 cm�1(nCN); elemental
analysis (%) calcd for C96H116B8Cl4Cu6Fe8N72O34: C 29.73, H 3.01, N
26.00; found: C 30.02, H 2.73, N 26.24.
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